Yiwen-ntu commited on
Commit
14af97a
·
verified ·
1 Parent(s): cf814c2

Upload 2 files

Browse files
MeshAnything/models/meshanything_v2.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as nnf
3
+ from torch import nn
4
+ import random
5
+ from transformers import AutoModelForCausalLM
6
+ from MeshAnything.miche.encode import load_model
7
+ from MeshAnything.models.shape_opt import ShapeOPTConfig
8
+ from einops import repeat, reduce, rearrange, pack, unpack
9
+
10
+ class MeshAnythingV2(nn.Module):
11
+ def __init__(self):
12
+ super().__init__()
13
+ self.point_encoder = load_model(ckpt_path=None)
14
+ self.n_discrete_size = 128
15
+ self.max_seq_ratio = 0.70
16
+ self.face_per_token = 9
17
+ self.cond_length = 257
18
+ self.cond_dim = 768
19
+ self.pad_id = -1
20
+ self.n_max_triangles = 1600
21
+ self.max_length = int(self.n_max_triangles * self.face_per_token * self.max_seq_ratio + 3 + self.cond_length) # add 1
22
+
23
+ self.coor_continuous_range = (-0.5, 0.5)
24
+
25
+ self.config = ShapeOPTConfig.from_pretrained(
26
+ "facebook/opt-350m",
27
+ n_positions=self.max_length,
28
+ max_position_embeddings=self.max_length,
29
+ vocab_size=self.n_discrete_size + 4,
30
+ _attn_implementation="flash_attention_2"
31
+ )
32
+
33
+ self.bos_token_id = 0
34
+ self.eos_token_id = 1
35
+ self.pad_token_id = 2
36
+
37
+ self.config.bos_token_id = self.bos_token_id
38
+ self.config.eos_token_id = self.eos_token_id
39
+ self.config.pad_token_id = self.pad_token_id
40
+ self.config._attn_implementation="flash_attention_2"
41
+ self.config.n_discrete_size = self.n_discrete_size
42
+ self.config.face_per_token = self.face_per_token
43
+ self.config.cond_length = self.cond_length
44
+
45
+ if self.config.word_embed_proj_dim != self.config.hidden_size:
46
+ self.config.word_embed_proj_dim = self.config.hidden_size
47
+ self.transformer = AutoModelForCausalLM.from_config(
48
+ config=self.config, use_flash_attention_2 = True
49
+ )
50
+ self.transformer.to_bettertransformer()
51
+
52
+ self.cond_head_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim)
53
+ self.cond_proj = nn.Linear(self.cond_dim * 2, self.config.word_embed_proj_dim)
54
+
55
+ self.eval()
56
+
57
+ def adjacent_detokenize(self, input_ids):
58
+ input_ids = input_ids.reshape(input_ids.shape[0], -1) # B x L
59
+ batch_size = input_ids.shape[0]
60
+ continuous_coors = torch.zeros((batch_size, self.n_max_triangles * 3 * 10, 3), device=input_ids.device)
61
+ continuous_coors[...] = float('nan')
62
+
63
+ for i in range(batch_size):
64
+ cur_ids = input_ids[i]
65
+ coor_loop_check = 0
66
+ vertice_count = 0
67
+ continuous_coors[i, :3, :] = torch.tensor([[-0.1, 0.0, 0.1], [-0.1, 0.1, 0.2], [-0.3, 0.3, 0.2]],
68
+ device=input_ids.device)
69
+ for id in cur_ids:
70
+ if id == self.pad_id:
71
+ break
72
+ elif id == self.n_discrete_size:
73
+ if coor_loop_check < 9:
74
+ break
75
+ if coor_loop_check % 3 !=0:
76
+ break
77
+ coor_loop_check = 0
78
+ else:
79
+
80
+ if coor_loop_check % 3 == 0 and coor_loop_check >= 9:
81
+ continuous_coors[i, vertice_count] = continuous_coors[i, vertice_count-2]
82
+ continuous_coors[i, vertice_count+1] = continuous_coors[i, vertice_count-1]
83
+ vertice_count += 2
84
+ continuous_coors[i, vertice_count, coor_loop_check % 3] = undiscretize(id, self.coor_continuous_range[0], self.coor_continuous_range[1], self.n_discrete_size)
85
+ if coor_loop_check % 3 == 2:
86
+ vertice_count += 1
87
+ coor_loop_check += 1
88
+
89
+ continuous_coors = rearrange(continuous_coors, 'b (nf nv) c -> b nf nv c', nv=3, c=3)
90
+
91
+ return continuous_coors # b, nf, 3, 3
92
+
93
+
94
+ def forward(self, data_dict: dict, is_eval: bool = False) -> dict:
95
+ if not is_eval:
96
+ return self.train_one_step(data_dict)
97
+ else:
98
+ return self.generate(data_dict)
99
+
100
+ def process_point_feature(self, point_feature):
101
+ encode_feature = torch.zeros(point_feature.shape[0], self.cond_length, self.config.word_embed_proj_dim,
102
+ device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
103
+ encode_feature[:, 0] = self.cond_head_proj(point_feature[:, 0])
104
+ shape_latents = self.point_encoder.to_shape_latents(point_feature[:, 1:])
105
+ encode_feature[:, 1:] = self.cond_proj(torch.cat([point_feature[:, 1:], shape_latents], dim=-1))
106
+
107
+ return encode_feature
108
+
109
+ @torch.no_grad()
110
+ def forward(self, pc_normal, sampling=False) -> dict:
111
+ batch_size = pc_normal.shape[0]
112
+ point_feature = self.point_encoder.encode_latents(pc_normal)
113
+ processed_point_feature = self.process_point_feature(point_feature)
114
+ generate_length = self.max_length - self.cond_length
115
+ net_device = next(self.parameters()).device
116
+ outputs = torch.ones(batch_size, generate_length).long().to(net_device) * self.eos_token_id
117
+ # batch x ntokens
118
+ if not sampling:
119
+ results = self.transformer.generate(
120
+ inputs_embeds=processed_point_feature,
121
+ max_new_tokens=generate_length, # all faces plus two
122
+ num_beams=1,
123
+ bos_token_id=self.bos_token_id,
124
+ eos_token_id=self.eos_token_id,
125
+ pad_token_id=self.pad_token_id,
126
+ )
127
+ else:
128
+ results = self.transformer.generate(
129
+ inputs_embeds = processed_point_feature,
130
+ max_new_tokens = generate_length, # all faces plus two
131
+ do_sample=True,
132
+ top_k=50,
133
+ top_p=0.95,
134
+ bos_token_id = self.bos_token_id,
135
+ eos_token_id = self.eos_token_id,
136
+ pad_token_id = self.pad_token_id,
137
+ )
138
+ assert results.shape[1] <= generate_length # B x ID bos is not included since it's predicted
139
+ outputs[:, :results.shape[1]] = results
140
+ # batch x ntokens ====> batch x ntokens x D
141
+ outputs = outputs[:, 1: -1]
142
+
143
+ outputs[outputs == self.bos_token_id] = self.pad_id
144
+ outputs[outputs == self.eos_token_id] = self.pad_id
145
+ outputs[outputs == self.pad_token_id] = self.pad_id
146
+
147
+ outputs[outputs != self.pad_id] -= 3
148
+ gen_mesh = self.adjacent_detokenize(outputs)
149
+
150
+ return gen_mesh
151
+
152
+ def undiscretize(
153
+ t,
154
+ low,#-0.5
155
+ high,# 0.5
156
+ num_discrete
157
+ ):
158
+ t = t.float() #[0, num_discrete-1]
159
+
160
+ t /= num_discrete # 0<=t<1
161
+ t = t * (high - low) + low # -0.5 <= t < 0.5
162
+ return t
MeshAnything/models/shape_opt.py CHANGED
@@ -8,9 +8,8 @@ from transformers.modeling_outputs import (
8
  import torch
9
  from torch import nn
10
  from torch.nn import CrossEntropyLoss
11
- from transformers.utils import replace_return_docstrings, logging
12
  from transformers.modeling_outputs import BaseModelOutputWithPast
13
- # from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
14
 
15
  class ShapeOPTConfig(OPTConfig):
16
  model_type = "shape_opt"
@@ -26,23 +25,6 @@ class ShapeOPT(OPTForCausalLM):
26
  # Initialize weights and apply final processing
27
  self.post_init()
28
 
29
- def tie_weights(self):
30
- """
31
- Tie the weights between the input embeddings and the output embeddings.
32
-
33
- If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
34
- weights instead.
35
- """
36
- if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
37
- if hasattr(self, self.base_model_prefix):
38
- self = getattr(self, self.base_model_prefix)
39
- self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)
40
-
41
- for module in self.modules():
42
- if hasattr(module, "_tie_weights"):
43
- module._tie_weights()
44
-
45
-
46
  @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="OPTConfig")
47
  def forward(
48
  self,
@@ -140,7 +122,7 @@ class ShapeOPT(OPTForCausalLM):
140
 
141
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
142
  outputs = self.model.decoder(
143
- input_ids=input_ids,
144
  face_ids = face_ids,
145
  attention_mask=attention_mask,
146
  head_mask=head_mask,
@@ -195,28 +177,18 @@ class ShapeOPTDecoder(OPTDecoder):
195
  self.padding_idx = config.pad_token_id
196
  self.max_target_positions = config.max_position_embeddings
197
  self.vocab_size = config.vocab_size
198
-
199
- self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx) # not used
200
  self.hidden_size = config.hidden_size
201
  self.word_embed_proj_dim = config.word_embed_proj_dim
202
- self.extra_embeds = nn.Embedding(3, config.word_embed_proj_dim) #padding_idx=self.padding_idx)
203
- self.input_layer = nn.Linear(config.quantize_codebook_dim, config.word_embed_proj_dim)
204
 
205
  self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
206
- self.token_embed_positions = OPTFacePositionalEmbedding(config.face_per_token + 3, config.word_embed_proj_dim) #padding_idx=self.padding_idx)
 
207
  self.face_per_token = config.face_per_token
208
  self.cond_length = config.cond_length
209
  self.cond_embed = nn.Embedding(2, config.word_embed_proj_dim)
210
 
211
- if config.word_embed_proj_dim != config.hidden_size:
212
- self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
213
- else:
214
- self.project_out = None
215
-
216
- if config.word_embed_proj_dim != config.hidden_size:
217
- self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
218
- else:
219
- self.project_in = None
220
  # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
221
  # with checkpoints that have been fine-tuned before transformers v4.20.1
222
  # see https://github.com/facebookresearch/metaseq/pull/164
@@ -234,17 +206,6 @@ class ShapeOPTDecoder(OPTDecoder):
234
  # Initialize weights and apply final processing
235
  self.post_init()
236
 
237
- def embed_with_vae(self, input_ids):
238
- inputs_embeds = repeat(torch.zeros(input_ids.shape, device=input_ids.device), 'b n -> b n d',
239
- d=self.word_embed_proj_dim).clone().detach()
240
- idx_in_extra = torch.isin(input_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
241
- inputs_embeds[idx_in_extra] += self.extra_embeds(input_ids[idx_in_extra])
242
- self.quantize_codebooks = self.quantize_codebooks.to(input_ids.device)
243
- inputs_embeds[~idx_in_extra] += self.input_layer(self.quantize_codebooks[0][input_ids[~idx_in_extra] - 3])
244
-
245
- return inputs_embeds
246
-
247
-
248
  def forward(
249
  self,
250
  input_ids: torch.LongTensor = None,
@@ -315,11 +276,13 @@ class ShapeOPTDecoder(OPTDecoder):
315
 
316
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
317
  # Transformer Decoder
318
- if input_ids is not None:
 
 
 
319
  input_shape = input_ids.size()
320
  input_ids = input_ids.view(-1, input_shape[-1])
321
- inputs_embeds = self.embed_with_vae(input_ids) # nothing to do with position
322
-
323
  face_embeds = self.token_embed_positions(attention_mask[:, self.cond_length:], face_ids, input_ids,
324
  self.face_per_token)
325
  inputs_embeds += face_embeds
@@ -329,7 +292,8 @@ class ShapeOPTDecoder(OPTDecoder):
329
 
330
  elif inputs_embeds is not None:
331
  # assert self.cond and not self.training
332
-
 
333
  total_length = inputs_embeds.shape[1] # B x length x embeding
334
  cond_embed_query = torch.zeros((inputs_embeds.shape[0], total_length), device=inputs_embeds.device,
335
  dtype=inputs_embeds.dtype).long()
@@ -357,9 +321,6 @@ class ShapeOPTDecoder(OPTDecoder):
357
 
358
  pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
359
 
360
- if self.project_in is not None:
361
- inputs_embeds = self.project_in(inputs_embeds)
362
-
363
  hidden_states = inputs_embeds + pos_embeds
364
 
365
  # decoder layers
@@ -419,9 +380,6 @@ class ShapeOPTDecoder(OPTDecoder):
419
  if self.final_layer_norm is not None:
420
  hidden_states = self.final_layer_norm(hidden_states)
421
 
422
- if self.project_out is not None:
423
- hidden_states = self.project_out(hidden_states)
424
-
425
  # add hidden states from the last decoder layer
426
  if output_hidden_states:
427
  all_hidden_states += (hidden_states,)
@@ -436,6 +394,56 @@ class ShapeOPTDecoder(OPTDecoder):
436
  attentions=all_self_attns,
437
  )
438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439
  class OPTFacePositionalEmbedding(nn.Embedding):
440
  """
441
  This module learns positional embeddings up to a fixed maximum size.
 
8
  import torch
9
  from torch import nn
10
  from torch.nn import CrossEntropyLoss
11
+ from transformers.utils import replace_return_docstrings
12
  from transformers.modeling_outputs import BaseModelOutputWithPast
 
13
 
14
  class ShapeOPTConfig(OPTConfig):
15
  model_type = "shape_opt"
 
25
  # Initialize weights and apply final processing
26
  self.post_init()
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="OPTConfig")
29
  def forward(
30
  self,
 
122
 
123
  # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
124
  outputs = self.model.decoder(
125
+ input_ids = input_ids,
126
  face_ids = face_ids,
127
  attention_mask=attention_mask,
128
  head_mask=head_mask,
 
177
  self.padding_idx = config.pad_token_id
178
  self.max_target_positions = config.max_position_embeddings
179
  self.vocab_size = config.vocab_size
180
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
 
181
  self.hidden_size = config.hidden_size
182
  self.word_embed_proj_dim = config.word_embed_proj_dim
183
+ self.n_discrete_size = config.n_discrete_size
 
184
 
185
  self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
186
+ self.token_embed_positions = OPTLoopEmbedding(10, config.word_embed_proj_dim, self.n_discrete_size) #padding_idx=self.padding_idx)
187
+
188
  self.face_per_token = config.face_per_token
189
  self.cond_length = config.cond_length
190
  self.cond_embed = nn.Embedding(2, config.word_embed_proj_dim)
191
 
 
 
 
 
 
 
 
 
 
192
  # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
193
  # with checkpoints that have been fine-tuned before transformers v4.20.1
194
  # see https://github.com/facebookresearch/metaseq/pull/164
 
206
  # Initialize weights and apply final processing
207
  self.post_init()
208
 
 
 
 
 
 
 
 
 
 
 
 
209
  def forward(
210
  self,
211
  input_ids: torch.LongTensor = None,
 
276
 
277
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
278
  # Transformer Decoder
279
+ if input_ids is not None and inputs_embeds is not None: # when train and first generate
280
+ assert False
281
+ elif input_ids is not None:
282
+ assert not self.training
283
  input_shape = input_ids.size()
284
  input_ids = input_ids.view(-1, input_shape[-1])
285
+ inputs_embeds = self.embed_tokens(input_ids)
 
286
  face_embeds = self.token_embed_positions(attention_mask[:, self.cond_length:], face_ids, input_ids,
287
  self.face_per_token)
288
  inputs_embeds += face_embeds
 
292
 
293
  elif inputs_embeds is not None:
294
  # assert self.cond and not self.training
295
+ assert not self.training
296
+ self.token_embed_positions.init_state(inputs_embeds)
297
  total_length = inputs_embeds.shape[1] # B x length x embeding
298
  cond_embed_query = torch.zeros((inputs_embeds.shape[0], total_length), device=inputs_embeds.device,
299
  dtype=inputs_embeds.dtype).long()
 
321
 
322
  pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
323
 
 
 
 
324
  hidden_states = inputs_embeds + pos_embeds
325
 
326
  # decoder layers
 
380
  if self.final_layer_norm is not None:
381
  hidden_states = self.final_layer_norm(hidden_states)
382
 
 
 
 
383
  # add hidden states from the last decoder layer
384
  if output_hidden_states:
385
  all_hidden_states += (hidden_states,)
 
394
  attentions=all_self_attns,
395
  )
396
 
397
+ class OPTLoopEmbedding(nn.Embedding):
398
+ """
399
+ This module learns positional embeddings up to a fixed maximum size.
400
+ """
401
+
402
+ def __init__(self, num_embeddings: int, embedding_dim: int, n_discrete_size: int):
403
+ super().__init__(num_embeddings, embedding_dim)
404
+ self.state = None
405
+ self.loop_state = None
406
+ self.n_discrete_size = n_discrete_size + 3 # for padding
407
+
408
+ def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
409
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
410
+ if face_ids is not None:
411
+ return super().forward(face_ids)
412
+
413
+ assert input_ids.shape[1] == 1, "Only one token is allowed for loop embedding"
414
+ assert self.state is not None, "State is not initialized"
415
+ # zero as beginning
416
+ batch_size = input_ids.shape[0]
417
+ face_ids = input_ids.clone().detach()
418
+
419
+ for cur_batch_index in range(batch_size):
420
+ cur_ids = input_ids[cur_batch_index]
421
+
422
+ idx_in_extra = torch.isin(cur_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
423
+ if idx_in_extra:
424
+ self.state[cur_batch_index] = 9 # init
425
+ self.loop_state[cur_batch_index] = 0
426
+ else:
427
+ if cur_ids == self.n_discrete_size:
428
+ face_ids[cur_batch_index] = 3
429
+ self.state[cur_batch_index] = 9 # init
430
+ self.loop_state[cur_batch_index] = 0
431
+ else:
432
+ if self.state[cur_batch_index] == 0:
433
+ face_ids[cur_batch_index] = 7 + self.loop_state[cur_batch_index] % 3
434
+ else:
435
+ self.state[cur_batch_index] -= 1
436
+ face_ids[cur_batch_index] = 4 + self.loop_state[cur_batch_index] % 3
437
+ self.loop_state[cur_batch_index] += 1
438
+
439
+ return super().forward(face_ids)
440
+
441
+ def init_state(self, template_tensor):
442
+ batch_size = template_tensor.shape[0]
443
+ self.state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)
444
+ self.state[...] = 9
445
+ self.loop_state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)
446
+
447
  class OPTFacePositionalEmbedding(nn.Embedding):
448
  """
449
  This module learns positional embeddings up to a fixed maximum size.