Spaces:
Sleeping
Sleeping
File size: 8,262 Bytes
96a9519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import math
import os
from draggan.viz import renderer
import torch
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
from PIL import Image
from tqdm import tqdm
import dataclasses
import draggan.dnnlib as dnnlib
from .lpips import util
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def make_image(tensor):
return (
tensor.detach()
.clamp_(min=-1, max=1)
.add(1)
.div_(2)
.mul(255)
.type(torch.uint8)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
@dataclasses.dataclass
class InverseConfig:
lr_warmup = 0.05
lr_decay = 0.25
lr = 0.1
noise = 0.05
noise_decay = 0.75
# step = 1000
step = 1000
noise_regularize = 1e5
mse = 0.1
def inverse_image(
g_ema,
image,
percept,
image_size=256,
w_plus = False,
config=InverseConfig(),
device='cuda:0'
):
args = config
n_mean_latent = 10000
resize = min(image_size, 256)
if torch.is_tensor(image)==False:
transform = transforms.Compose(
[
transforms.Resize(resize,),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
img = transform(image)
else:
img = transforms.functional.resize(image,resize)
transform = transforms.Compose(
[
transforms.CenterCrop(resize),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
img = transform(img)
imgs = []
imgs.append(img)
imgs = torch.stack(imgs, 0).to(device)
with torch.no_grad():
#noise_sample = torch.randn(n_mean_latent, 512, device=device)
noise_sample = torch.randn(n_mean_latent, g_ema.z_dim, device=device)
#label = torch.zeros([n_mean_latent,g_ema.c_dim],device = device)
w_samples = g_ema.mapping(noise_sample,None)
w_samples = w_samples[:, :1, :]
w_avg = w_samples.mean(0)
w_std = ((w_samples - w_avg).pow(2).sum() / n_mean_latent) ** 0.5
noises = {name: buf for (name, buf) in g_ema.synthesis.named_buffers() if 'noise_const' in name}
for noise in noises.values():
noise = torch.randn_like(noise)
noise.requires_grad = True
w_opt = w_avg.detach().clone()
if w_plus:
w_opt = w_opt.repeat(1,g_ema.mapping.num_ws, 1)
w_opt.requires_grad = True
#if args.w_plus:
#latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1)
optimizer = optim.Adam([w_opt] + list(noises.values()), lr=args.lr)
pbar = tqdm(range(args.step))
latent_path = []
for i in pbar:
t = i / args.step
lr = get_lr(t, args.lr)
optimizer.param_groups[0]["lr"] = lr
noise_strength = w_std * args.noise * max(0, 1 - t / args.noise_decay) ** 2
w_noise = torch.randn_like(w_opt) * noise_strength
if w_plus:
ws = w_opt + w_noise
else:
ws = (w_opt + w_noise).repeat([1, g_ema.mapping.num_ws, 1])
img_gen = g_ema.synthesis(ws, noise_mode='const', force_fp32=True)
#latent_n = latent_noise(latent_in, noise_strength.item())
#latent, noise = g_ema.prepare([latent_n], input_is_latent=True, noise=noises)
#img_gen, F = g_ema.generate(latent, noise)
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
if img_gen.shape[2] > 256:
img_gen = F.interpolate(img_gen, size=(256, 256), mode='area')
p_loss = percept(img_gen,imgs)
# Noise regularization.
reg_loss = 0.0
for v in noises.values():
noise = v[None, None, :, :] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise * torch.roll(noise, shifts=1, dims=3)).mean() ** 2
reg_loss += (noise * torch.roll(noise, shifts=1, dims=2)).mean() ** 2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
mse_loss = F.mse_loss(img_gen, imgs)
loss = p_loss + args.noise_regularize * reg_loss + args.mse * mse_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Normalize noise.
with torch.no_grad():
for buf in noises.values():
buf -= buf.mean()
buf *= buf.square().mean().rsqrt()
if (i + 1) % 100 == 0:
latent_path.append(w_opt.detach().clone())
pbar.set_description(
(
f"perceptual: {p_loss.item():.4f}; noise regularize: {reg_loss:.4f};"
f" mse: {mse_loss.item():.4f}; lr: {lr:.4f}"
)
)
#latent, noise = g_ema.prepare([latent_path[-1]], input_is_latent=True, noise=noises)
#img_gen, F = g_ema.generate(latent, noise)
if w_plus:
ws = latent_path[-1]
else:
ws = latent_path[-1].repeat([1, g_ema.mapping.num_ws, 1])
img_gen = g_ema.synthesis(ws, noise_mode='const')
result = {
"latent": latent_path[-1],
"sample": img_gen,
"real": imgs,
}
return result
def toogle_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
class PTI:
def __init__(self,G, percept, l2_lambda = 1,max_pti_step = 400, pti_lr = 3e-4 ):
self.g_ema = G
self.l2_lambda = l2_lambda
self.max_pti_step = max_pti_step
self.pti_lr = pti_lr
self.percept = percept
def cacl_loss(self,percept, generated_image,real_image):
mse_loss = F.mse_loss(generated_image, real_image)
p_loss = percept(generated_image, real_image).sum()
loss = p_loss +self.l2_lambda * mse_loss
return loss
def train(self,img,w_plus=False):
if not torch.cuda.is_available():
device = 'cpu'
else:
device = 'cuda'
if torch.is_tensor(img) == False:
transform = transforms.Compose(
[
transforms.Resize(self.g_ema.img_resolution, ),
transforms.CenterCrop(self.g_ema.img_resolution),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
real_img = transform(img).to(device).unsqueeze(0)
else:
img = transforms.functional.resize(img, self.g_ema.img_resolution)
transform = transforms.Compose(
[
transforms.CenterCrop(self.g_ema.img_resolution),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
real_img = transform(img).to(device).unsqueeze(0)
inversed_result = inverse_image(self.g_ema,img,self.percept,self.g_ema.img_resolution,w_plus,device=device)
w_pivot = inversed_result['latent']
if w_plus:
ws = w_pivot
else:
ws = w_pivot.repeat([1, self.g_ema.mapping.num_ws, 1])
toogle_grad(self.g_ema,True)
optimizer = torch.optim.Adam(self.g_ema.parameters(), lr=self.pti_lr)
print('start PTI')
pbar = tqdm(range(self.max_pti_step))
for i in pbar:
t = i / self.max_pti_step
lr = get_lr(t, self.pti_lr)
optimizer.param_groups[0]["lr"] = lr
generated_image = self.g_ema.synthesis(ws,noise_mode='const')
loss = self.cacl_loss(self.percept,generated_image,real_img)
pbar.set_description(
(
f"loss: {loss.item():.4f}"
)
)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
generated_image = self.g_ema.synthesis(ws, noise_mode='const')
return generated_image,ws |