import gradio as gr import os from all_models import models from externalmod import gr_Interface_load, save_image, randomize_seed from prompt_extend import extend_prompt import asyncio from threading import RLock lock = RLock() HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. inference_timeout = 600 MAX_SEED = 2**32-1 current_model = models[0] text_gen1 = extend_prompt models2 = [gr_Interface_load(f"models/{m}", live=False, preprocess=True, postprocess=False, hf_token=HF_TOKEN) for m in models] def text_it1(inputs, text_gen1=text_gen1): go_t1 = text_gen1(inputs) return(go_t1) def set_model(current_model): current_model = models[current_model] return gr.update(label=(f"{current_model}")) def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed): output1 = gen_fn(model_choice, inputs, neg_input, height, width, steps, cfg, seed) return (output1) # https://huggingface.co/docs/api-inference/detailed_parameters # https://huggingface.co/docs/huggingface_hub/package_reference/inference_client async def infer(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout): kwargs = {} if height > 0: kwargs["height"] = height if width > 0: kwargs["width"] = width if steps > 0: kwargs["num_inference_steps"] = steps if cfg > 0: cfg = kwargs["guidance_scale"] = cfg if seed == -1: kwargs["seed"] = randomize_seed() else: kwargs["seed"] = seed task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn, prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) await asyncio.sleep(0) try: result = await asyncio.wait_for(task, timeout=timeout) except asyncio.TimeoutError as e: print(e) print(f"Task timed out: {models[model_index]}") if not task.done(): task.cancel() result = None raise Exception(f"Task timed out: {models[model_index]}") from e except Exception as e: print(e) if not task.done(): task.cancel() result = None raise Exception() from e if task.done() and result is not None and not isinstance(result, tuple): with lock: png_path = "image.png" image = save_image(result, png_path, models[model_index], prompt, nprompt, height, width, steps, cfg, seed) return image return None def gen_fn(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1): try: loop = asyncio.new_event_loop() result = loop.run_until_complete(infer(model_index, prompt, nprompt, height, width, steps, cfg, seed, inference_timeout)) except (Exception, asyncio.CancelledError) as e: print(e) print(f"Task aborted: {models[model_index]}") result = None raise gr.Error(f"Task aborted: {models[model_index]}, Error: {e}") finally: loop.close() return result css=""" h1 {font-size: 6em; color: #ffc99f; margin-top: 30px; margin-bottom: 30px; text-shadow: 3px 3px 0 rgba(0, 0, 0, 1) !important;} h3 {color: #ffc99f; !important;} h4 {display: inline-block; color: #ffffff !important;} .wrapper img {font-size: 98% !important; white-space: nowrap !important; text-align: center !important; display: inline-block !important; color: #ffffff !important;} .wrapper {color: #ffffff !important;} .gr-box {border-top-color: #000000 !important; border-right-color: #ffffff !important; border-bottom-color: #ffffff !important; border-left-color: #000000 !important;} """ with gr.Blocks(theme='John6666/YntecLight', fill_width=True, css=css) as myface: gr.HTML(f"""

ToyWorld XL

Top {int(len(models))} SDXL models, but why? For your enjoyment!


9.23 NEW!Negative prompts, Width, Height, Steps, Guidance, Seeds and 100 models added!


Try mode than 900 image models at the PrintingPress, and use 6 different models at ToyWorld!!

""", elem_classes="gr-box") with gr.Row(): with gr.Column(scale=100): # Model selection dropdown model_name1 = gr.Dropdown(label="Select Model", choices=[m for m in models], type="index", value=current_model, interactive=True, elem_classes=["gr-box", "gr-input"]) with gr.Row(): with gr.Column(scale=100): with gr.Group(): magic1 = gr.Textbox(label="Your Prompt", lines=4, elem_classes=["gr-box", "gr-input"]) #Positive with gr.Accordion("Advanced", open=False, visible=True): neg_input = gr.Textbox(label='Negative prompt', lines=1, elem_classes=["gr-box", "gr-input"]) with gr.Row(): width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"]) height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"]) with gr.Row(): steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=33, step=1, value=0, elem_classes=["gr-box", "gr-input"]) cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=-1, elem_classes=["gr-box", "gr-input"]) seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes=["gr-box", "gr-input"]) seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary") run = gr.Button("Generate Image", variant="primary", elem_classes="gr-button") with gr.Row(): with gr.Column(): output1 = gr.Image(label=(f"{current_model}"), show_download_button=True, interactive=False, show_share_button=False, format=".png", elem_classes="gr-box") with gr.Row(): with gr.Column(scale=50): input_text=gr.Textbox(label="Use this box to extend an idea automagically, by typing some words and clicking Extend Idea", lines=2, elem_classes=["gr-box", "gr-input"]) see_prompts=gr.Button("Extend Idea -> overwrite the contents of the `Your Prompt´ box above", variant="primary", elem_classes="gr-button") use_short=gr.Button("Copy the contents of this box to the `Your Prompt´ box above", variant="primary", elem_classes="gr-button") def short_prompt(inputs): return (inputs) model_name1.change(set_model, inputs=model_name1, outputs=[output1]) gr.on( triggers=[run.click, magic1.submit], fn=send_it1, inputs=[magic1, model_name1, neg_input, height, width, steps, cfg, seed], outputs=[output1], concurrency_limit=None, queue=False, ) use_short.click(short_prompt, inputs=[input_text], outputs=magic1) see_prompts.click(text_it1, inputs=[input_text], outputs=magic1) seed_rand.click(randomize_seed, None, [seed], queue=False) myface.queue(default_concurrency_limit=200, max_size=200) myface.launch(show_api=False, max_threads=400) # https://github.com/gradio-app/gradio/issues/6339