Yntec commited on
Commit
88ee23f
1 Parent(s): b58cbab

Create convert_repo_to_safetensors_sd.py

Browse files
Files changed (1) hide show
  1. convert_repo_to_safetensors_sd.py +363 -0
convert_repo_to_safetensors_sd.py ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
2
+ # *Only* converts the UNet, VAE, and Text Encoder.
3
+ # Does not convert optimizer state or any other thing.
4
+
5
+ import argparse
6
+ import os.path as osp
7
+ import re
8
+
9
+ import torch
10
+ from safetensors.torch import load_file, save_file
11
+
12
+
13
+ # =================#
14
+ # UNet Conversion #
15
+ # =================#
16
+
17
+ unet_conversion_map = [
18
+ # (stable-diffusion, HF Diffusers)
19
+ ("time_embed.0.weight", "time_embedding.linear_1.weight"),
20
+ ("time_embed.0.bias", "time_embedding.linear_1.bias"),
21
+ ("time_embed.2.weight", "time_embedding.linear_2.weight"),
22
+ ("time_embed.2.bias", "time_embedding.linear_2.bias"),
23
+ ("input_blocks.0.0.weight", "conv_in.weight"),
24
+ ("input_blocks.0.0.bias", "conv_in.bias"),
25
+ ("out.0.weight", "conv_norm_out.weight"),
26
+ ("out.0.bias", "conv_norm_out.bias"),
27
+ ("out.2.weight", "conv_out.weight"),
28
+ ("out.2.bias", "conv_out.bias"),
29
+ ]
30
+
31
+ unet_conversion_map_resnet = [
32
+ # (stable-diffusion, HF Diffusers)
33
+ ("in_layers.0", "norm1"),
34
+ ("in_layers.2", "conv1"),
35
+ ("out_layers.0", "norm2"),
36
+ ("out_layers.3", "conv2"),
37
+ ("emb_layers.1", "time_emb_proj"),
38
+ ("skip_connection", "conv_shortcut"),
39
+ ]
40
+
41
+ unet_conversion_map_layer = []
42
+ # hardcoded number of downblocks and resnets/attentions...
43
+ # would need smarter logic for other networks.
44
+ for i in range(4):
45
+ # loop over downblocks/upblocks
46
+
47
+ for j in range(2):
48
+ # loop over resnets/attentions for downblocks
49
+ hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
50
+ sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
51
+ unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
52
+
53
+ if i < 3:
54
+ # no attention layers in down_blocks.3
55
+ hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
56
+ sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
57
+ unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
58
+
59
+ for j in range(3):
60
+ # loop over resnets/attentions for upblocks
61
+ hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
62
+ sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
63
+ unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
64
+
65
+ if i > 0:
66
+ # no attention layers in up_blocks.0
67
+ hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
68
+ sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
69
+ unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
70
+
71
+ if i < 3:
72
+ # no downsample in down_blocks.3
73
+ hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
74
+ sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
75
+ unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
76
+
77
+ # no upsample in up_blocks.3
78
+ hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
79
+ sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
80
+ unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
81
+
82
+ hf_mid_atn_prefix = "mid_block.attentions.0."
83
+ sd_mid_atn_prefix = "middle_block.1."
84
+ unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
85
+
86
+ for j in range(2):
87
+ hf_mid_res_prefix = f"mid_block.resnets.{j}."
88
+ sd_mid_res_prefix = f"middle_block.{2*j}."
89
+ unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
90
+
91
+
92
+ def convert_unet_state_dict(unet_state_dict):
93
+ # buyer beware: this is a *brittle* function,
94
+ # and correct output requires that all of these pieces interact in
95
+ # the exact order in which I have arranged them.
96
+ mapping = {k: k for k in unet_state_dict.keys()}
97
+ for sd_name, hf_name in unet_conversion_map:
98
+ mapping[hf_name] = sd_name
99
+ for k, v in mapping.items():
100
+ if "resnets" in k:
101
+ for sd_part, hf_part in unet_conversion_map_resnet:
102
+ v = v.replace(hf_part, sd_part)
103
+ mapping[k] = v
104
+ for k, v in mapping.items():
105
+ for sd_part, hf_part in unet_conversion_map_layer:
106
+ v = v.replace(hf_part, sd_part)
107
+ mapping[k] = v
108
+ new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
109
+ return new_state_dict
110
+
111
+
112
+ # ================#
113
+ # VAE Conversion #
114
+ # ================#
115
+
116
+ vae_conversion_map = [
117
+ # (stable-diffusion, HF Diffusers)
118
+ ("nin_shortcut", "conv_shortcut"),
119
+ ("norm_out", "conv_norm_out"),
120
+ ("mid.attn_1.", "mid_block.attentions.0."),
121
+ ]
122
+
123
+ for i in range(4):
124
+ # down_blocks have two resnets
125
+ for j in range(2):
126
+ hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
127
+ sd_down_prefix = f"encoder.down.{i}.block.{j}."
128
+ vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
129
+
130
+ if i < 3:
131
+ hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
132
+ sd_downsample_prefix = f"down.{i}.downsample."
133
+ vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
134
+
135
+ hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
136
+ sd_upsample_prefix = f"up.{3-i}.upsample."
137
+ vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
138
+
139
+ # up_blocks have three resnets
140
+ # also, up blocks in hf are numbered in reverse from sd
141
+ for j in range(3):
142
+ hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
143
+ sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
144
+ vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
145
+
146
+ # this part accounts for mid blocks in both the encoder and the decoder
147
+ for i in range(2):
148
+ hf_mid_res_prefix = f"mid_block.resnets.{i}."
149
+ sd_mid_res_prefix = f"mid.block_{i+1}."
150
+ vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
151
+
152
+
153
+ vae_conversion_map_attn = [
154
+ # (stable-diffusion, HF Diffusers)
155
+ ("norm.", "group_norm."),
156
+ ("q.", "query."),
157
+ ("k.", "key."),
158
+ ("v.", "value."),
159
+ ("proj_out.", "proj_attn."),
160
+ ]
161
+
162
+ # This is probably not the most ideal solution, but it does work.
163
+ vae_extra_conversion_map = [
164
+ ("to_q", "q"),
165
+ ("to_k", "k"),
166
+ ("to_v", "v"),
167
+ ("to_out.0", "proj_out"),
168
+ ]
169
+
170
+
171
+ def reshape_weight_for_sd(w):
172
+ # convert HF linear weights to SD conv2d weights
173
+ if not w.ndim == 1:
174
+ return w.reshape(*w.shape, 1, 1)
175
+ else:
176
+ return w
177
+
178
+
179
+ def convert_vae_state_dict(vae_state_dict):
180
+ mapping = {k: k for k in vae_state_dict.keys()}
181
+ for k, v in mapping.items():
182
+ for sd_part, hf_part in vae_conversion_map:
183
+ v = v.replace(hf_part, sd_part)
184
+ mapping[k] = v
185
+ for k, v in mapping.items():
186
+ if "attentions" in k:
187
+ for sd_part, hf_part in vae_conversion_map_attn:
188
+ v = v.replace(hf_part, sd_part)
189
+ mapping[k] = v
190
+ new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
191
+ weights_to_convert = ["q", "k", "v", "proj_out"]
192
+ keys_to_rename = {}
193
+ for k, v in new_state_dict.items():
194
+ for weight_name in weights_to_convert:
195
+ if f"mid.attn_1.{weight_name}.weight" in k:
196
+ print(f"Reshaping {k} for SD format")
197
+ new_state_dict[k] = reshape_weight_for_sd(v)
198
+ for weight_name, real_weight_name in vae_extra_conversion_map:
199
+ if f"mid.attn_1.{weight_name}.weight" in k or f"mid.attn_1.{weight_name}.bias" in k:
200
+ keys_to_rename[k] = k.replace(weight_name, real_weight_name)
201
+ for k, v in keys_to_rename.items():
202
+ if k in new_state_dict:
203
+ print(f"Renaming {k} to {v}")
204
+ new_state_dict[v] = reshape_weight_for_sd(new_state_dict[k])
205
+ del new_state_dict[k]
206
+ return new_state_dict
207
+
208
+
209
+ # =========================#
210
+ # Text Encoder Conversion #
211
+ # =========================#
212
+
213
+
214
+ textenc_conversion_lst = [
215
+ # (stable-diffusion, HF Diffusers)
216
+ ("resblocks.", "text_model.encoder.layers."),
217
+ ("ln_1", "layer_norm1"),
218
+ ("ln_2", "layer_norm2"),
219
+ (".c_fc.", ".fc1."),
220
+ (".c_proj.", ".fc2."),
221
+ (".attn", ".self_attn"),
222
+ ("ln_final.", "transformer.text_model.final_layer_norm."),
223
+ ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
224
+ ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
225
+ ]
226
+ protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
227
+ textenc_pattern = re.compile("|".join(protected.keys()))
228
+
229
+ # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
230
+ code2idx = {"q": 0, "k": 1, "v": 2}
231
+
232
+
233
+ def convert_text_enc_state_dict_v20(text_enc_dict):
234
+ new_state_dict = {}
235
+ capture_qkv_weight = {}
236
+ capture_qkv_bias = {}
237
+ for k, v in text_enc_dict.items():
238
+ if (
239
+ k.endswith(".self_attn.q_proj.weight")
240
+ or k.endswith(".self_attn.k_proj.weight")
241
+ or k.endswith(".self_attn.v_proj.weight")
242
+ ):
243
+ k_pre = k[: -len(".q_proj.weight")]
244
+ k_code = k[-len("q_proj.weight")]
245
+ if k_pre not in capture_qkv_weight:
246
+ capture_qkv_weight[k_pre] = [None, None, None]
247
+ capture_qkv_weight[k_pre][code2idx[k_code]] = v
248
+ continue
249
+
250
+ if (
251
+ k.endswith(".self_attn.q_proj.bias")
252
+ or k.endswith(".self_attn.k_proj.bias")
253
+ or k.endswith(".self_attn.v_proj.bias")
254
+ ):
255
+ k_pre = k[: -len(".q_proj.bias")]
256
+ k_code = k[-len("q_proj.bias")]
257
+ if k_pre not in capture_qkv_bias:
258
+ capture_qkv_bias[k_pre] = [None, None, None]
259
+ capture_qkv_bias[k_pre][code2idx[k_code]] = v
260
+ continue
261
+
262
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
263
+ new_state_dict[relabelled_key] = v
264
+
265
+ for k_pre, tensors in capture_qkv_weight.items():
266
+ if None in tensors:
267
+ raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
268
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
269
+ new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
270
+
271
+ for k_pre, tensors in capture_qkv_bias.items():
272
+ if None in tensors:
273
+ raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
274
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
275
+ new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
276
+
277
+ return new_state_dict
278
+
279
+
280
+ def convert_text_enc_state_dict(text_enc_dict):
281
+ return text_enc_dict
282
+
283
+
284
+ def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True):
285
+ # Path for safetensors
286
+ unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
287
+ vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
288
+ text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
289
+
290
+ # Load models from safetensors if it exists, if it doesn't pytorch
291
+ if osp.exists(unet_path):
292
+ unet_state_dict = load_file(unet_path, device="cpu")
293
+ else:
294
+ unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
295
+ unet_state_dict = torch.load(unet_path, map_location="cpu")
296
+
297
+ if osp.exists(vae_path):
298
+ vae_state_dict = load_file(vae_path, device="cpu")
299
+ else:
300
+ vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
301
+ vae_state_dict = torch.load(vae_path, map_location="cpu")
302
+
303
+ if osp.exists(text_enc_path):
304
+ text_enc_dict = load_file(text_enc_path, device="cpu")
305
+ else:
306
+ text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
307
+ text_enc_dict = torch.load(text_enc_path, map_location="cpu")
308
+
309
+ # Convert the UNet model
310
+ unet_state_dict = convert_unet_state_dict(unet_state_dict)
311
+ unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
312
+
313
+ # Convert the VAE model
314
+ vae_state_dict = convert_vae_state_dict(vae_state_dict)
315
+ vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
316
+
317
+ # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
318
+ is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
319
+
320
+ if is_v20_model:
321
+ # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
322
+ text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
323
+ text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
324
+ text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
325
+ else:
326
+ text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
327
+ text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
328
+
329
+ # Put together new checkpoint
330
+ state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
331
+ if half:
332
+ state_dict = {k: v.half() for k, v in state_dict.items()}
333
+
334
+ save_file(state_dict, checkpoint_path)
335
+
336
+
337
+ def download_repo(repo_id, dir_path):
338
+ from huggingface_hub import snapshot_download
339
+ try:
340
+ snapshot_download(repo_id=repo_id, local_dir=dir_path)
341
+ except Exception as e:
342
+ print(f"Error: Failed to download {repo_id}. ")
343
+ return
344
+
345
+
346
+ def convert_repo_to_safetensors(repo_id, half = True):
347
+ download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
348
+ output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
349
+ download_repo(repo_id, download_dir)
350
+ convert_diffusers_to_safetensors(download_dir, output_filename, half)
351
+ return output_filename
352
+
353
+
354
+ if __name__ == "__main__":
355
+ parser = argparse.ArgumentParser()
356
+
357
+ parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
358
+ parser.add_argument("--half", default=True, help="Save weights in half precision.")
359
+
360
+ args = parser.parse_args()
361
+ assert args.repo_id is not None, "Must provide a Repo ID!"
362
+
363
+ convert_repo_to_safetensors(args.repo_id, args.half)