FastStableDifussion / src /backend /lcm_text_to_image.py
YoBatM's picture
Upload folder using huggingface_hub
99b955f verified
raw
history blame
23.8 kB
import gc
from math import ceil
from typing import Any, List
import random
import numpy as np
import torch
import logging
from backend.device import is_openvino_device
from backend.lora import load_lora_weight
from backend.controlnet import (
load_controlnet_adapters,
update_controlnet_arguments,
)
from backend.models.lcmdiffusion_setting import (
DiffusionTask,
LCMDiffusionSetting,
LCMLora,
)
from backend.openvino.pipelines import (
get_ov_image_to_image_pipeline,
get_ov_text_to_image_pipeline,
ov_load_taesd,
)
from backend.pipelines.lcm import (
get_image_to_image_pipeline,
get_lcm_model_pipeline,
load_taesd,
)
from backend.pipelines.lcm_lora import get_lcm_lora_pipeline
from constants import DEVICE, GGUF_THREADS
from diffusers import LCMScheduler
from image_ops import resize_pil_image
from backend.openvino.flux_pipeline import get_flux_pipeline
from backend.openvino.ov_hc_stablediffusion_pipeline import OvHcLatentConsistency
from backend.gguf.gguf_diffusion import (
GGUFDiffusion,
ModelConfig,
Txt2ImgConfig,
SampleMethod,
)
from paths import get_app_path
from pprint import pprint
try:
# support for token merging; keeping it optional for now
import tomesd
except ImportError:
print("tomesd library unavailable; disabling token merging support")
tomesd = None
class LCMTextToImage:
def __init__(
self,
device: str = "cpu",
) -> None:
self.pipeline = None
self.use_openvino = False
self.device = ""
self.previous_model_id = None
self.previous_use_tae_sd = False
self.previous_use_lcm_lora = False
self.previous_ov_model_id = ""
self.previous_token_merging = 0.0
self.previous_safety_checker = False
self.previous_use_openvino = False
self.img_to_img_pipeline = None
self.is_openvino_init = False
self.previous_lora = None
self.task_type = DiffusionTask.text_to_image
self.previous_use_gguf_model = False
self.previous_gguf_model = None
self.torch_data_type = (
torch.float32 if is_openvino_device() or DEVICE == "mps" else torch.float16
)
self.ov_model_id = None
print(f"Torch datatype : {self.torch_data_type}")
def _pipeline_to_device(self):
print(f"Pipeline device : {DEVICE}")
print(f"Pipeline dtype : {self.torch_data_type}")
self.pipeline.to(
torch_device=DEVICE,
torch_dtype=self.torch_data_type,
)
def _add_freeu(self):
pipeline_class = self.pipeline.__class__.__name__
if isinstance(self.pipeline.scheduler, LCMScheduler):
if pipeline_class == "StableDiffusionPipeline":
print("Add FreeU - SD")
self.pipeline.enable_freeu(
s1=0.9,
s2=0.2,
b1=1.2,
b2=1.4,
)
elif pipeline_class == "StableDiffusionXLPipeline":
print("Add FreeU - SDXL")
self.pipeline.enable_freeu(
s1=0.6,
s2=0.4,
b1=1.1,
b2=1.2,
)
def _enable_vae_tiling(self):
self.pipeline.vae.enable_tiling()
def _update_lcm_scheduler_params(self):
if isinstance(self.pipeline.scheduler, LCMScheduler):
self.pipeline.scheduler = LCMScheduler.from_config(
self.pipeline.scheduler.config,
beta_start=0.001,
beta_end=0.01,
)
def _is_hetero_pipeline(self) -> bool:
return "square" in self.ov_model_id.lower()
def _load_ov_hetero_pipeline(self):
print("Loading Heterogeneous Compute pipeline")
if DEVICE.upper()=="NPU":
device = ["NPU", "NPU", "NPU"]
self.pipeline = OvHcLatentConsistency(self.ov_model_id,device)
else:
self.pipeline = OvHcLatentConsistency(self.ov_model_id)
def _generate_images_hetero_compute(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
):
print("Using OpenVINO ")
if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
return [
self.pipeline.generate(
prompt=lcm_diffusion_setting.prompt,
neg_prompt=lcm_diffusion_setting.negative_prompt,
init_image=None,
strength=1.0,
num_inference_steps=lcm_diffusion_setting.inference_steps,
)
]
else:
return [
self.pipeline.generate(
prompt=lcm_diffusion_setting.prompt,
neg_prompt=lcm_diffusion_setting.negative_prompt,
init_image=lcm_diffusion_setting.init_image,
strength=lcm_diffusion_setting.strength,
num_inference_steps=lcm_diffusion_setting.inference_steps,
)
]
def _is_valid_mode(
self,
modes: List,
) -> bool:
return modes.count(True) == 1 or modes.count(False) == 3
def _validate_mode(
self,
modes: List,
) -> None:
if not self._is_valid_mode(modes):
raise ValueError("Invalid mode,delete configs/settings.yaml and retry!")
def init(
self,
device: str = "cpu",
lcm_diffusion_setting: LCMDiffusionSetting = LCMDiffusionSetting(),
) -> None:
# Mode validation either LCM LoRA or OpenVINO or GGUF
modes = [
lcm_diffusion_setting.use_gguf_model,
lcm_diffusion_setting.use_openvino,
lcm_diffusion_setting.use_lcm_lora,
]
self._validate_mode(modes)
self.device = device
self.use_openvino = lcm_diffusion_setting.use_openvino
model_id = lcm_diffusion_setting.lcm_model_id
use_local_model = lcm_diffusion_setting.use_offline_model
use_tiny_auto_encoder = lcm_diffusion_setting.use_tiny_auto_encoder
use_lora = lcm_diffusion_setting.use_lcm_lora
lcm_lora: LCMLora = lcm_diffusion_setting.lcm_lora
token_merging = lcm_diffusion_setting.token_merging
self.ov_model_id = lcm_diffusion_setting.openvino_lcm_model_id
if lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value:
lcm_diffusion_setting.init_image = resize_pil_image(
lcm_diffusion_setting.init_image,
lcm_diffusion_setting.image_width,
lcm_diffusion_setting.image_height,
)
if (
self.pipeline is None
or self.previous_model_id != model_id
or self.previous_use_tae_sd != use_tiny_auto_encoder
or self.previous_lcm_lora_base_id != lcm_lora.base_model_id
or self.previous_lcm_lora_id != lcm_lora.lcm_lora_id
or self.previous_use_lcm_lora != use_lora
or self.previous_ov_model_id != self.ov_model_id
or self.previous_token_merging != token_merging
or self.previous_safety_checker != lcm_diffusion_setting.use_safety_checker
or self.previous_use_openvino != lcm_diffusion_setting.use_openvino
or self.previous_use_gguf_model != lcm_diffusion_setting.use_gguf_model
or self.previous_gguf_model != lcm_diffusion_setting.gguf_model
or (
self.use_openvino
and (
self.previous_task_type != lcm_diffusion_setting.diffusion_task
or self.previous_lora != lcm_diffusion_setting.lora
)
)
or lcm_diffusion_setting.rebuild_pipeline
):
if self.use_openvino and is_openvino_device():
if self.pipeline:
del self.pipeline
self.pipeline = None
gc.collect()
self.is_openvino_init = True
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
print(
f"***** Init Text to image (OpenVINO) - {self.ov_model_id} *****"
)
if "flux" in self.ov_model_id.lower():
print("Loading OpenVINO Flux pipeline")
self.pipeline = get_flux_pipeline(
self.ov_model_id,
lcm_diffusion_setting.use_tiny_auto_encoder,
)
elif self._is_hetero_pipeline():
self._load_ov_hetero_pipeline()
else:
self.pipeline = get_ov_text_to_image_pipeline(
self.ov_model_id,
use_local_model,
)
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
if not self.pipeline and self._is_hetero_pipeline():
self._load_ov_hetero_pipeline()
else:
print(
f"***** Image to image (OpenVINO) - {self.ov_model_id} *****"
)
self.pipeline = get_ov_image_to_image_pipeline(
self.ov_model_id,
use_local_model,
)
elif lcm_diffusion_setting.use_gguf_model:
model = lcm_diffusion_setting.gguf_model.diffusion_path
print(f"***** Init Text to image (GGUF) - {model} *****")
# if self.pipeline:
# self.pipeline.terminate()
# del self.pipeline
# self.pipeline = None
self._init_gguf_diffusion(lcm_diffusion_setting)
else:
if self.pipeline or self.img_to_img_pipeline:
self.pipeline = None
self.img_to_img_pipeline = None
gc.collect()
controlnet_args = load_controlnet_adapters(lcm_diffusion_setting)
if use_lora:
print(
f"***** Init LCM-LoRA pipeline - {lcm_lora.base_model_id} *****"
)
self.pipeline = get_lcm_lora_pipeline(
lcm_lora.base_model_id,
lcm_lora.lcm_lora_id,
use_local_model,
torch_data_type=self.torch_data_type,
pipeline_args=controlnet_args,
)
else:
print(f"***** Init LCM Model pipeline - {model_id} *****")
self.pipeline = get_lcm_model_pipeline(
model_id,
use_local_model,
controlnet_args,
)
self.img_to_img_pipeline = get_image_to_image_pipeline(self.pipeline)
if tomesd and token_merging > 0.001:
print(f"***** Token Merging: {token_merging} *****")
tomesd.apply_patch(self.pipeline, ratio=token_merging)
tomesd.apply_patch(self.img_to_img_pipeline, ratio=token_merging)
if use_tiny_auto_encoder:
if self.use_openvino and is_openvino_device():
if self.pipeline.__class__.__name__ != "OVFluxPipeline":
print("Using Tiny Auto Encoder (OpenVINO)")
ov_load_taesd(
self.pipeline,
use_local_model,
)
else:
print("Using Tiny Auto Encoder")
load_taesd(
self.pipeline,
use_local_model,
self.torch_data_type,
)
load_taesd(
self.img_to_img_pipeline,
use_local_model,
self.torch_data_type,
)
if not self.use_openvino and not is_openvino_device():
self._pipeline_to_device()
if not self._is_hetero_pipeline():
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
and lcm_diffusion_setting.use_openvino
):
self.pipeline.scheduler = LCMScheduler.from_config(
self.pipeline.scheduler.config,
)
else:
if not lcm_diffusion_setting.use_gguf_model:
self._update_lcm_scheduler_params()
if use_lora:
self._add_freeu()
self.previous_model_id = model_id
self.previous_ov_model_id = self.ov_model_id
self.previous_use_tae_sd = use_tiny_auto_encoder
self.previous_lcm_lora_base_id = lcm_lora.base_model_id
self.previous_lcm_lora_id = lcm_lora.lcm_lora_id
self.previous_use_lcm_lora = use_lora
self.previous_token_merging = lcm_diffusion_setting.token_merging
self.previous_safety_checker = lcm_diffusion_setting.use_safety_checker
self.previous_use_openvino = lcm_diffusion_setting.use_openvino
self.previous_task_type = lcm_diffusion_setting.diffusion_task
self.previous_lora = lcm_diffusion_setting.lora.model_copy(deep=True)
self.previous_use_gguf_model = lcm_diffusion_setting.use_gguf_model
self.previous_gguf_model = lcm_diffusion_setting.gguf_model.model_copy(
deep=True
)
lcm_diffusion_setting.rebuild_pipeline = False
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
print(f"Pipeline : {self.pipeline}")
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
if self.use_openvino and is_openvino_device():
print(f"Pipeline : {self.pipeline}")
else:
print(f"Pipeline : {self.img_to_img_pipeline}")
if self.use_openvino:
if lcm_diffusion_setting.lora.enabled:
print("Warning: Lora models not supported on OpenVINO mode")
elif not lcm_diffusion_setting.use_gguf_model:
adapters = self.pipeline.get_active_adapters()
print(f"Active adapters : {adapters}")
def _get_timesteps(self):
time_steps = self.pipeline.scheduler.config.get("timesteps")
time_steps_value = [int(time_steps)] if time_steps else None
return time_steps_value
def generate(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
reshape: bool = False,
) -> Any:
guidance_scale = lcm_diffusion_setting.guidance_scale
img_to_img_inference_steps = lcm_diffusion_setting.inference_steps
check_step_value = int(
lcm_diffusion_setting.inference_steps * lcm_diffusion_setting.strength
)
if (
lcm_diffusion_setting.diffusion_task == DiffusionTask.image_to_image.value
and check_step_value < 1
):
img_to_img_inference_steps = ceil(1 / lcm_diffusion_setting.strength)
print(
f"Strength: {lcm_diffusion_setting.strength},{img_to_img_inference_steps}"
)
pipeline_extra_args = {}
if lcm_diffusion_setting.use_seed:
cur_seed = lcm_diffusion_setting.seed
# for multiple images with a fixed seed, use sequential seeds
seeds = [(cur_seed + i) for i in range(lcm_diffusion_setting.number_of_images)]
else:
seeds = [random.randint(0,999999999) for i in range(lcm_diffusion_setting.number_of_images)]
if self.use_openvino:
# no support for generators; try at least to ensure reproducible results for single images
np.random.seed(seeds[0])
if self._is_hetero_pipeline():
torch.manual_seed(seeds[0])
lcm_diffusion_setting.seed=seeds[0]
else:
pipeline_extra_args['generator'] = [
torch.Generator(device=self.device).manual_seed(s) for s in seeds]
is_openvino_pipe = lcm_diffusion_setting.use_openvino and is_openvino_device()
if is_openvino_pipe and not self._is_hetero_pipeline():
print("Using OpenVINO")
if reshape and not self.is_openvino_init:
print("Reshape and compile")
self.pipeline.reshape(
batch_size=-1,
height=lcm_diffusion_setting.image_height,
width=lcm_diffusion_setting.image_width,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
)
self.pipeline.compile()
if self.is_openvino_init:
self.is_openvino_init = False
if is_openvino_pipe and self._is_hetero_pipeline():
return self._generate_images_hetero_compute(lcm_diffusion_setting)
elif lcm_diffusion_setting.use_gguf_model:
return self._generate_images_gguf(lcm_diffusion_setting)
if lcm_diffusion_setting.clip_skip > 1:
# We follow the convention that "CLIP Skip == 2" means "skip
# the last layer", so "CLIP Skip == 1" means "no skipping"
pipeline_extra_args["clip_skip"] = lcm_diffusion_setting.clip_skip - 1
if not lcm_diffusion_setting.use_safety_checker:
self.pipeline.safety_checker = None
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
and not is_openvino_pipe
):
self.img_to_img_pipeline.safety_checker = None
if (
not lcm_diffusion_setting.use_lcm_lora
and not lcm_diffusion_setting.use_openvino
and lcm_diffusion_setting.guidance_scale != 1.0
):
print("Not using LCM-LoRA so setting guidance_scale 1.0")
guidance_scale = 1.0
controlnet_args = update_controlnet_arguments(lcm_diffusion_setting)
if lcm_diffusion_setting.use_openvino:
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
result_images = self.pipeline(
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=lcm_diffusion_setting.inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
).images
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
result_images = self.pipeline(
image=lcm_diffusion_setting.init_image,
strength=lcm_diffusion_setting.strength,
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=img_to_img_inference_steps * 3,
guidance_scale=guidance_scale,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
).images
else:
if (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.text_to_image.value
):
result_images = self.pipeline(
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=lcm_diffusion_setting.inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
timesteps=self._get_timesteps(),
**pipeline_extra_args,
**controlnet_args,
).images
elif (
lcm_diffusion_setting.diffusion_task
== DiffusionTask.image_to_image.value
):
result_images = self.img_to_img_pipeline(
image=lcm_diffusion_setting.init_image,
strength=lcm_diffusion_setting.strength,
prompt=lcm_diffusion_setting.prompt,
negative_prompt=lcm_diffusion_setting.negative_prompt,
num_inference_steps=img_to_img_inference_steps,
guidance_scale=guidance_scale,
width=lcm_diffusion_setting.image_width,
height=lcm_diffusion_setting.image_height,
num_images_per_prompt=lcm_diffusion_setting.number_of_images,
**pipeline_extra_args,
**controlnet_args,
).images
for (i, seed) in enumerate(seeds):
result_images[i].info['image_seed'] = seed
return result_images
def _init_gguf_diffusion(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
):
config = ModelConfig()
config.model_path = lcm_diffusion_setting.gguf_model.diffusion_path
config.diffusion_model_path = lcm_diffusion_setting.gguf_model.diffusion_path
config.clip_l_path = lcm_diffusion_setting.gguf_model.clip_path
config.t5xxl_path = lcm_diffusion_setting.gguf_model.t5xxl_path
config.vae_path = lcm_diffusion_setting.gguf_model.vae_path
config.n_threads = GGUF_THREADS
print(f"GGUF Threads : {GGUF_THREADS} ")
print("GGUF - Model config")
pprint(lcm_diffusion_setting.gguf_model.model_dump())
self.pipeline = GGUFDiffusion(
get_app_path(), # Place DLL in fastsdcpu folder
config,
True,
)
def _generate_images_gguf(
self,
lcm_diffusion_setting: LCMDiffusionSetting,
):
if lcm_diffusion_setting.diffusion_task == DiffusionTask.text_to_image.value:
t2iconfig = Txt2ImgConfig()
t2iconfig.prompt = lcm_diffusion_setting.prompt
t2iconfig.batch_count = lcm_diffusion_setting.number_of_images
t2iconfig.cfg_scale = lcm_diffusion_setting.guidance_scale
t2iconfig.height = lcm_diffusion_setting.image_height
t2iconfig.width = lcm_diffusion_setting.image_width
t2iconfig.sample_steps = lcm_diffusion_setting.inference_steps
t2iconfig.sample_method = SampleMethod.EULER
if lcm_diffusion_setting.use_seed:
t2iconfig.seed = lcm_diffusion_setting.seed
else:
t2iconfig.seed = -1
return self.pipeline.generate_text2mg(t2iconfig)