Spaces:
Runtime error
Runtime error
File size: 6,031 Bytes
4182c57 011974c 4182c57 27f9849 4182c57 eb7ca6d 011974c 4182c57 90968b7 4182c57 011974c 284ba7f 011974c 4182c57 011974c 4182c57 011974c 4182c57 284ba7f 011974c 4182c57 284ba7f 011974c 4182c57 011974c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import asyncio
import httpx
import json
import requests
import math
import os
client = httpx.AsyncClient()
# 请求URL
recommand_base_url = "https://" + os.getenv("recommand_base_url")
chat_url = "https://" + os.getenv("chat_url")
model_url = "https://" + os.getenv("model_url")
character_url = "https://" + os.getenv("character_url")
avatar_url = "https://" + os.getenv("avatar_url")
image_url = "https://" + os.getenv("image_url")
auth = os.getenv("auth")
moment_url = os.getenv("moment_url")
#headers
def create_headers(language):
# 映射
language_mapping = {
'Chinese': 'zh',
'English': 'en',
'Japanese': 'ja',
'Korean': 'ko'
}
# 获取对应的语言代码,如果不存在则默认为 'zh'
language_code = language_mapping.get(language, 'zh')
return {
'X-Refresh-Token': '',
'X-Language': language_code,
'accept-language': '',
'User-Agent': 'Apifox/1.0.0 (https://apifox.com)',
'Authorization': auth,
'Accept': '*/*',
'Connection': 'keep-alive',
'X-nsfw': '1'
}
def recommand_character(language):
response = requests.get(character_url, headers=create_headers(language))
json_data = response.json()
characters = [{
"name": item["name"],
"_id": item["_id"],
"avatar_url": str(avatar_url + item['_id'] + "_avatar.webp")
} for item in json_data['data']]
return characters
def id_to_avatar(char_id):
return str(avatar_url + char_id + "_avatar.webp")
#GET模型列表
def get_models():
class ModelStorage:
def __init__(self):
self.models = []
def add_models(self, models):
for model_info in models:
# 过滤掉 'gpt-4o' 和 'gpt-4o-mini'
if model_info['model'] not in ['mythomax-13b']:
if model_info['model'] in ['gemma-2-9b', 'llama-3.1-8b']:
weight = 12 # Assign a low weight to reduce their frequency
else:
weight = int(math.ceil(25 / (model_info['price'] + 0.5)))
self.models.extend([model_info['model']] * weight)
model_storage = ModelStorage()
# 从指定的 URL 获取 JSON 数据
response = requests.get(model_url)
if response.status_code == 200:
data = response.json()
# 添加模型到 self.models
model_storage.add_models(data['data'])
return model_storage.models
#解析推荐json
async def extract_recommand(data, language):
result = []
for item in data["data"]:
opening = await get_moment_opening(item["_id"], language)
result.append({
"character_id": item["character_id"],
"avatar_url": str(avatar_url + item["character_id"] + "_avatar.webp"),
"_id": item["_id"],
"image_url": str(image_url + item["_id"] + "_large.webp"),
"description": item["description"],
"name": item["title"],
"opening": opening
})
return result
async def get_moment_opening(moment_id, language):
url = f"{moment_url}{moment_id}"
async with httpx.AsyncClient() as client:
response = await client.get(url, headers=create_headers(language))
if response.status_code == 200:
data = response.json()
return data['data']['opening']
return None
#请求推荐API
async def recommand(char_id, language):
recommand_url = str(recommand_base_url + char_id + "?num=20&offset=0")
async with httpx.AsyncClient() as client:
response = await client.get(recommand_url, headers=create_headers(language))
json_data = response.json()
return await extract_recommand(json_data, language)
async def fetch_stream(query, model, moment_id, session_id, bio, request_name, queue, language):
payload = {"query": query, "model": model, "bio": bio, "moment_id": moment_id}
if session_id:
payload["session_id"] = session_id
async with client.stream(
"POST", chat_url, json=payload, headers=create_headers(language)
) as response:
# 获取并返回 header
if response.status_code != 200:
await queue.put((request_name, "content", "Error Occur!"))
await queue.put((request_name, "end", None))
return
response_headers = dict(response.headers)
session_id = response_headers.get("x-session-id")
await queue.put((request_name, "header", response_headers))
# 流式处理响应内容
async for chunk in response.aiter_bytes():
await queue.put((request_name, "content", chunk.decode()))
# 标记流结束
await queue.put((request_name, "end", None))
return session_id
async def combine_streams(
query_a,
query_b,
model_a,
model_b,
moment_id_a,
moment_id_b,
session_id_a,
session_id_b,
bio_a,
bio_b,
language
):
queue = asyncio.Queue()
task_a = asyncio.create_task(
fetch_stream(
query_a, model_a, moment_id_a, session_id_a, bio_a, "requestA", queue, language
)
)
task_b = asyncio.create_task(
fetch_stream(
query_b, model_b, moment_id_b, session_id_b, bio_b, "requestB", queue, language
)
)
headers = {}
content = {"requestA": "", "requestB": ""}
active_streams = 2
while active_streams > 0:
request_name, data_type, data = await queue.get()
if data_type == "header":
headers[f"{request_name}_header"] = data
if len(headers) == 2:
yield headers
elif data_type == "content":
content[request_name] = data.strip()
if content["requestA"] or content["requestB"]:
yield content
content = {"requestA": "", "requestB": ""}
elif data_type == "end":
active_streams -= 1
session_id_a = await task_a
session_id_b = await task_b
|