Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import argparse | |
def generate_prompt(question, prompt_file="prompt.md", metadata_file="metadata.sql"): | |
with open(prompt_file, "r") as f: | |
prompt = f.read() | |
with open(metadata_file, "r") as f: | |
table_metadata_string = f.read() | |
prompt = prompt.format( | |
user_question=question, table_metadata_string=table_metadata_string | |
) | |
return prompt | |
def get_tokenizer_model(model_name): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
use_cache=True, | |
) | |
return tokenizer, model | |
def run_inference(question, prompt_file="prompt.md", metadata_file="metadata.sql"): | |
tokenizer, model = get_tokenizer_model("defog/sqlcoder-34b-alpha") | |
prompt = generate_prompt(question, prompt_file, metadata_file) | |
# make sure the model stops generating at triple ticks | |
# eos_token_id = tokenizer.convert_tokens_to_ids(["```"])[0] | |
eos_token_id = tokenizer.eos_token_id | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=300, | |
do_sample=False, | |
num_beams=5, # do beam search with 5 beams for high quality results | |
) | |
generated_query = ( | |
pipe( | |
prompt, | |
num_return_sequences=1, | |
eos_token_id=eos_token_id, | |
pad_token_id=eos_token_id, | |
)[0]["generated_text"] | |
.split("```sql")[-1] | |
.split("```")[0] | |
.split(";")[0] | |
.strip() | |
+ ";" | |
) | |
return generated_query | |
if __name__ == "__main__": | |
# Parse arguments | |
parser = argparse.ArgumentParser(description="Run inference on a question") | |
parser.add_argument("-q","--question", type=str, help="Question to run inference on") | |
args = parser.parse_args() | |
question = args.question | |
print("Loading a model and generating a SQL query for answering your question...") | |
print(run_inference(question)) | |