YourAIEngineer commited on
Commit
7037b42
·
verified ·
1 Parent(s): d5f12e1

Upload 4 files

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. app.py +267 -0
  3. best.pt +3 -0
  4. requrements.txt +9 -0
  5. simfang.ttf +3 -0
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Nutri-Label/simfang.ttf filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Nutri-Label/simfang.ttf filter=lfs diff=lfs merge=lfs -text
37
+ simfang.ttf filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import cv2
3
+ import numpy as np
4
+ import re
5
+ import os
6
+ import pandas as pd
7
+ from PIL import Image
8
+ import time
9
+ from ultralytics import YOLO
10
+ from paddleocr import PaddleOCR, draw_ocr
11
+
12
+ st.title("Nutri-Grade Label Detection & Grade Calculator")
13
+
14
+ # -----------------------------------------------
15
+ # Info & Petunjuk Penggunaan
16
+ # -----------------------------------------------
17
+ with st.expander("Info & Petunjuk Penggunaan"):
18
+ st.markdown("""
19
+ **Deskripsi Aplikasi:**
20
+
21
+ Aplikasi ini membantu Anda mendeteksi dan mengekstrak informasi tabel gizi dari gambar label nutrisi, melakukan normalisasi nilai nutrisi per 100 g/ml, dan menghitung Nutri-Grade sesuai dengan standar resmi (Rev. Juni 2023).
22
+
23
+ **Fitur Utama:**
24
+ - Deteksi objek label nutrisi dengan YOLO.
25
+ - Ekstraksi teks dengan PaddleOCR, mendukung format "key: value".
26
+ - Normalisasi nilai nutrisi (Gula dan Lemak Jenuh) per 100 g/ml.
27
+ - Perhitungan grade berdasarkan threshold:
28
+ • Gula: Grade A ≤ 1g, B: >1-5g, C: >5-10g, D: >10g per 100 ml.
29
+ • Lemak Jenuh: Grade A ≤ 0.7g, B: >0.7-1.2g, C: >1.2-2.8g, D: >2.8g per 100 ml.
30
+ • **Grade akhir diambil dari nilai terburuk antara gula dan lemak jenuh.**
31
+
32
+ **Cara Penggunaan:**
33
+ 1. Upload gambar label nutrisi (JPG/PNG).
34
+ 2. Sistem mendeteksi objek dan mengekstrak nilai nutrisi.
35
+ 3. Periksa dan koreksi nilai secara manual jika diperlukan.
36
+ 4. Klik *Hitung* untuk melihat tabel normalisasi dan grade.
37
+ """)
38
+
39
+ with st.expander("!! Tolong Diperhatikan !!"):
40
+ st.markdown("""
41
+ Labelisasi di bawah hanya sebagai gambaran umum. Perlu riset lebih lanjut untuk akurasi.
42
+
43
+ **Pengembangan:**
44
+ - Konsultasi dengan nutritionist untuk parameter yang lebih tepat.
45
+ - Integrasi informasi halal, kalori, dan fitur interaktif (misal: chatbot).
46
+ """)
47
+
48
+ # Fungsi untuk membersihkan nilai numerik (contoh: "15g" → 15.0)
49
+ def parse_numeric_value(text):
50
+ cleaned = re.sub(r"[^\d\.\-]", "", text)
51
+ try:
52
+ return float(cleaned)
53
+ except ValueError:
54
+ return 0.0
55
+
56
+ # Inisialisasi model YOLO dan PaddleOCR
57
+ trained_model_path = "best.pt" # Pastikan file model YOLO ada di working directory
58
+ yolo_model = YOLO(trained_model_path)
59
+ ocr_model = PaddleOCR(use_gpu=True, lang='en', cls=True)
60
+
61
+ # --- STEP 1: Upload Gambar ---
62
+ uploaded_file = st.file_uploader("Upload Gambar (JPG/PNG)", type=["jpg", "jpeg", "png"])
63
+ if uploaded_file is not None:
64
+ file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
65
+ img = cv2.imdecode(file_bytes, 1)
66
+ st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), caption="Gambar yang diupload", use_column_width=True)
67
+ img_path = "uploaded_image.jpg"
68
+ cv2.imwrite(img_path, img)
69
+
70
+ # --- STEP 2: Object Detection & Crop dengan YOLO ---
71
+ st.write("Melakukan object detection dengan YOLO dan crop region...")
72
+ yolo_results = yolo_model.predict(source=img_path, conf=0.5)
73
+ crop_images = []
74
+ boxes = yolo_results[0].boxes
75
+ for i, box in enumerate(boxes):
76
+ x1, y1, x2, y2 = box.xyxy[0].cpu().numpy().astype(int)
77
+ cropped = img[y1:y2, x1:x2]
78
+ crop_filename = f"crop_{i}.jpg"
79
+ cv2.imwrite(crop_filename, cropped)
80
+ crop_images.append((crop_filename, cropped))
81
+ st.success("Proses crop bounding box selesai!")
82
+ st.write("Jumlah crop yang ditemukan:", len(crop_images))
83
+ for crop_filename, cropped in crop_images:
84
+ st.image(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB), caption=f"Crop: {crop_filename}", use_column_width=True)
85
+
86
+ # --- STEP 3: OCR pada Gambar Penuh ---
87
+ st.write("Melakukan OCR pada gambar penuh dengan PaddleOCR...")
88
+ start_time = time.time()
89
+ ocr_result = ocr_model.ocr(img_path, cls=True)
90
+ ocr_time = time.time() - start_time
91
+ st.write(f"Waktu pemrosesan OCR: {ocr_time:.2f} detik")
92
+
93
+ if not ocr_result or len(ocr_result[0]) == 0:
94
+ st.error("OCR tidak menemukan teks pada gambar!")
95
+ else:
96
+ # Ekstrak data OCR
97
+ ocr_data = ocr_result[0]
98
+ ocr_list = []
99
+ for line in ocr_data:
100
+ box = line[0]
101
+ text = line[1][0]
102
+ score = line[1][1]
103
+ xs = [pt[0] for pt in box]
104
+ ys = [pt[1] for pt in box]
105
+ center_x = sum(xs) / len(xs)
106
+ center_y = sum(ys) / len(ys)
107
+ ocr_list.append({
108
+ "text": text,
109
+ "box": box,
110
+ "score": score,
111
+ "center_x": center_x,
112
+ "center_y": center_y,
113
+ "height": max(ys) - min(ys)
114
+ })
115
+ # Urutkan berdasarkan posisi vertikal
116
+ ocr_list = sorted(ocr_list, key=lambda x: x["center_y"])
117
+
118
+ # Ekstrak pasangan key-value dengan format "key: value"
119
+ # Hanya ekstrak gula, takaran saji, dan lemak jenuh
120
+ target_keys = {
121
+ "gula": ["gula"],
122
+ "takaran saji": ["takaran saji", "serving size"],
123
+ "lemak jenuh": ["lemak jenuh"]
124
+ }
125
+ extracted = {}
126
+ # Pass 1: Ekstraksi menggunakan tanda titik dua
127
+ for item in ocr_list:
128
+ txt_lower = item["text"].lower()
129
+ if ":" in txt_lower:
130
+ parts = txt_lower.split(":")
131
+ key_candidate = parts[0].strip()
132
+ value_candidate = parts[-1].strip()
133
+ for canonical, variants in target_keys.items():
134
+ for variant in variants:
135
+ if variant in key_candidate and canonical not in extracted:
136
+ clean_value = re.sub(r"[^\d\.\-]", "", value_candidate)
137
+ if clean_value and clean_value != ".":
138
+ extracted[canonical.capitalize()] = clean_value
139
+ break
140
+ # Pass 2: Fallback untuk key yang belum diekstrak
141
+ for item in ocr_list:
142
+ txt_lower = item["text"].lower()
143
+ for canonical, variants in target_keys.items():
144
+ if canonical not in extracted:
145
+ for variant in variants:
146
+ if variant in txt_lower:
147
+ key_center = (item["center_x"], item["center_y"])
148
+ key_height = item["height"]
149
+ best_candidate = None
150
+ min_dx = float('inf')
151
+ for other in ocr_list:
152
+ if other == item:
153
+ continue
154
+ if other["center_x"] > key_center[0] and abs(other["center_y"] - key_center[1]) < 0.5 * key_height:
155
+ dx = other["center_x"] - key_center[0]
156
+ if dx < min_dx:
157
+ min_dx = dx
158
+ best_candidate = other
159
+ if best_candidate:
160
+ raw_value = best_candidate["text"]
161
+ clean_value = re.sub(r"[^\d\.\-]", "", raw_value)
162
+ if clean_value and clean_value != ".":
163
+ extracted[canonical.capitalize()] = clean_value
164
+ break
165
+
166
+ if extracted:
167
+ st.write("**Hasil Ekstraksi Key-Value:**")
168
+ for k, v in extracted.items():
169
+ st.write(f"{k}: {v}")
170
+ else:
171
+ st.warning("Tidak ditemukan pasangan key-value yang cocok.")
172
+
173
+ # Tampilkan hasil OCR dengan bounding box untuk referensi
174
+ boxes_ocr = [line["box"] for line in ocr_list]
175
+ texts_ocr = [line["text"] for line in ocr_list]
176
+ scores_ocr = [line["score"] for line in ocr_list]
177
+ im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr, font_path="simfang.ttf")
178
+ im_show = Image.fromarray(im_show)
179
+ st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True)
180
+
181
+ # --- Koreksi Manual dengan st.form ---
182
+ with st.form("correction_form"):
183
+ st.write("Silakan koreksi nilai jika diperlukan (hanya angka, tanpa satuan):")
184
+ corrected_data = {}
185
+ for key in target_keys.keys():
186
+ key_cap = key.capitalize()
187
+ current_val = str(parse_numeric_value(extracted.get(key_cap, ""))) if key_cap in extracted else ""
188
+ new_val = st.text_input(f"{key_cap}", value=current_val)
189
+ corrected_data[key_cap] = new_val
190
+ submit_button = st.form_submit_button("Hitung")
191
+
192
+ if submit_button:
193
+ try:
194
+ serving_size = parse_numeric_value(corrected_data.get("Takaran saji", "100"))
195
+ except:
196
+ serving_size = 0.0
197
+
198
+ # Ambil nilai nutrisi (hanya gula dan lemak jenuh)
199
+ sugar_value = parse_numeric_value(corrected_data.get("Gula", "0"))
200
+ fat_value = parse_numeric_value(corrected_data.get("Lemak jenuh", "0"))
201
+
202
+ if serving_size > 0:
203
+ sugar_norm = (sugar_value / serving_size) * 100
204
+ fat_norm = (fat_value / serving_size) * 100
205
+ else:
206
+ st.error("Takaran saji tidak valid untuk normalisasi.")
207
+ sugar_norm, fat_norm = sugar_value, fat_value
208
+
209
+ st.write("**Tabel Hasil Normalisasi per 100 g/ml**")
210
+ data_tabel = {
211
+ "Nutrisi": ["Gula", "Lemak jenuh"],
212
+ "Nilai (per 100 g/ml)": [sugar_norm, fat_norm]
213
+ }
214
+ df_tabel = pd.DataFrame(data_tabel)
215
+ st.table(df_tabel)
216
+
217
+ # Fungsi untuk menghitung grade berdasarkan threshold
218
+ def grade_from_value(value, thresholds):
219
+ if value <= thresholds["A"]:
220
+ return "Grade A"
221
+ elif value <= thresholds["B"]:
222
+ return "Grade B"
223
+ elif value <= thresholds["C"]:
224
+ return "Grade C"
225
+ else:
226
+ return "Grade D"
227
+
228
+ # Threshold sesuai panduan Nutri-Grade (g/100ml)
229
+ thresholds_sugar = {"A": 1.0, "B": 5.0, "C": 10.0}
230
+ thresholds_fat = {"A": 0.7, "B": 1.2, "C": 2.8}
231
+
232
+ sugar_grade = grade_from_value(sugar_norm, thresholds_sugar)
233
+ fat_grade = grade_from_value(fat_norm, thresholds_fat)
234
+
235
+ # Grade akhir diambil dari nilai terburuk (nilai maksimum skor)
236
+ grade_scores = {"Grade A": 1, "Grade B": 2, "Grade C": 3, "Grade D": 4}
237
+ worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade])
238
+ inverse_scores = {v: k for k, v in grade_scores.items()}
239
+ final_grade = inverse_scores[worst_score]
240
+
241
+ st.write(f"**Grade Gula:** {sugar_grade}")
242
+ st.write(f"**Grade Lemak Jenuh:** {fat_grade}")
243
+ st.write(f"**Grade Akhir:** {final_grade}")
244
+
245
+ def color_grade(grade_text):
246
+ if grade_text == "Grade A":
247
+ bg_color = "#2ecc71"
248
+ elif grade_text == "Grade B":
249
+ bg_color = "#f1c40f"
250
+ elif grade_text == "Grade C":
251
+ bg_color = "#e67e22"
252
+ else:
253
+ bg_color = "#e74c3c"
254
+ return f"""
255
+ <div style="
256
+ background-color: {bg_color};
257
+ padding: 10px;
258
+ border-radius: 5px;
259
+ margin-top: 10px;
260
+ font-weight: bold;
261
+ color: white;
262
+ text-align: center;
263
+ ">
264
+ {grade_text}
265
+ </div>
266
+ """
267
+ st.markdown(color_grade(final_grade), unsafe_allow_html=True)
best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ffd3c6552428cee4cd5895053bd1ea6b1f4e7815d46bd03807c243ac75d17ca
3
+ size 6248483
requrements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url=https://www.paddlepaddle.org.cn/packages/stable/cpu/
2
+ paddlepaddle==3.0.0rc1
3
+ paddleocr
4
+ ultralytics
5
+ streamlit
6
+ numpy
7
+ opencv-python
8
+ pandas
9
+ Pillow
simfang.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:521c6f7546b4eb64fa4b0cd604bbd36333a20a57e388c8e2ad2ad07b9e593864
3
+ size 10576012