import streamlit as st import cv2 import numpy as np import re import os import pandas as pd from PIL import Image import time from paddleocr import PaddleOCR, draw_ocr import openai # Set API key dan base URL untuk OpenRouter (ganti placeholder dengan nilai yang valid) openai.api_key = "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" # Ganti dengan API key Anda openai.api_base = "https://openrouter.ai/api/v1" # Title dan Deskripsi st.title("Nutri-Grade Label Detection & Grade Calculator") st.caption("Selamat Datang di aplikasi prototype kami. Terinspirasi dari NutriGrade Singapura, kami berharap aplikasi ini dapat membantu teman-teman dalam memilih produk makanan yang lebih sehat. Tolong di refresh yah kalau nggak jalan") # ----------------------------------------------- # Info & Petunjuk Penggunaan # ----------------------------------------------- with st.expander("Petunjuk Penggunaan"): st.markdown(""" **Cara Penggunaan:** 1. Upload gambar, jika menggunakan smartphone pilih kamera lalu ambil foto. (kalau tidak jalan, coba refresh) 2. Sistem mendeteksi teks pada gambar menggunakan OCR. 3. Periksa dan koreksi nilai secara manual jika diperlukan. 4. Klik *Hitung* untuk melihat tabel normalisasi, grade, dan saran nutrisi. """) with st.expander("!! Tolong Diperhatikan !!"): st.markdown(""" 1. Aplikasi ini masih dalam Pengembangan. 2. Hasil ekstraksi hanya sebagai gambaran; silakan koreksi bila diperlukan. 3. Hosting gratisan, jadi mungkin ada beberapa kendala. 4. Kode dapat diakses di Hugging Face untuk kontribusi atau feedback. 5. Referensi: [Health Promotion Board Singapura](https://www.hpb.gov.sg/docs/default-source/pdf/nutri-grade-ci-guide_eng-only67e4e36349ad4274bfdb22236872336d.pdf) """) # Fungsi untuk membersihkan nilai numerik (contoh: "15g" → 15.0) def parse_numeric_value(text): cleaned = re.sub(r"[^\d\.\-]", "", text) try: return float(cleaned) except ValueError: return 0.0 # Inisialisasi model PaddleOCR ocr_model = PaddleOCR(use_gpu=True, lang='id', cls=True) # --- STEP 1: Upload Gambar --- uploaded_file = st.file_uploader("Upload Gambar (JPG/PNG)", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) img = cv2.imdecode(file_bytes, 1) st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), caption="Gambar yang diupload", use_column_width=True) img_path = "uploaded_image.jpg" cv2.imwrite(img_path, img) # --- STEP 2: OCR pada Gambar Penuh --- st.write("Melakukan OCR pada gambar...") start_time = time.time() ocr_result = ocr_model.ocr(img_path, cls=True) ocr_time = time.time() - start_time st.write(f"Waktu pemrosesan OCR: {ocr_time:.2f} detik") if not ocr_result or len(ocr_result[0]) == 0: st.error("OCR tidak menemukan teks pada gambar!") else: # Ekstrak data OCR ocr_data = ocr_result[0] ocr_list = [] for line in ocr_data: box = line[0] text = line[1][0] score = line[1][1] xs = [pt[0] for pt in box] ys = [pt[1] for pt in box] center_x = sum(xs) / len(xs) center_y = sum(ys) / len(ys) ocr_list.append({ "text": text, "box": box, "score": score, "center_x": center_x, "center_y": center_y, "height": max(ys) - min(ys) }) ocr_list = sorted(ocr_list, key=lambda x: x["center_y"]) # Ekstrak pasangan key-value dengan format "key: value" target_keys = { "gula": ["gula"], "takaran saji": ["takaran saji", "serving size"], "lemak jenuh": ["lemak jenuh"] } extracted = {} # Pass 1: Ekstraksi dengan tanda titik dua for item in ocr_list: txt_lower = item["text"].lower() if ":" in txt_lower: parts = txt_lower.split(":") key_candidate = parts[0].strip() value_candidate = parts[-1].strip() for canonical, variants in target_keys.items(): if canonical not in extracted: for variant in variants: if variant in key_candidate: clean_value = re.sub(r"[^\d\.\-]", "", value_candidate) if clean_value and clean_value != ".": extracted[canonical.capitalize()] = clean_value break # Pass 2: Fallback untuk key yang belum diekstrak for item in ocr_list: txt_lower = item["text"].lower() for canonical, variants in target_keys.items(): if canonical not in extracted: for variant in variants: if variant in txt_lower: key_center = (item["center_x"], item["center_y"]) key_height = item["height"] best_candidate = None min_dx = float('inf') for other in ocr_list: if other == item: continue if other["center_x"] > key_center[0] and abs(other["center_y"] - key_center[1]) < 0.5 * key_height: dx = other["center_x"] - key_center[0] if dx < min_dx: min_dx = dx best_candidate = other if best_candidate: raw_value = best_candidate["text"] clean_value = re.sub(r"[^\d\.\-]", "", raw_value) if clean_value and clean_value != ".": extracted[canonical.capitalize()] = clean_value break if extracted: st.write("**Hasil Ekstraksi Key-Value:**") for k, v in extracted.items(): st.write(f"{k}: {v}") else: st.warning("Tidak ditemukan pasangan key-value yang cocok.") # Tampilkan hasil OCR dengan bounding box untuk referensi boxes_ocr = [line["box"] for line in ocr_list] texts_ocr = [line["text"] for line in ocr_list] scores_ocr = [line["score"] for line in ocr_list] im_show = draw_ocr(Image.open(img_path).convert("RGB"), boxes_ocr, texts_ocr, scores_ocr, font_path="simfang.ttf") im_show = Image.fromarray(im_show) st.image(im_show, caption="Hasil OCR dengan Bounding Boxes", use_column_width=True) # --- Koreksi Manual dengan st.form --- with st.form("correction_form"): st.write("Silakan koreksi nilai jika diperlukan (hanya angka, tanpa satuan):") corrected_data = {} for key in target_keys.keys(): key_cap = key.capitalize() current_val = str(parse_numeric_value(extracted.get(key_cap, ""))) if key_cap in extracted else "" new_val = st.text_input(f"{key_cap}", value=current_val) corrected_data[key_cap] = new_val submit_button = st.form_submit_button("Hitung") if submit_button: try: serving_size = parse_numeric_value(corrected_data.get("Takaran saji", "100")) except: serving_size = 0.0 sugar_value = parse_numeric_value(corrected_data.get("Gula", "0")) fat_value = parse_numeric_value(corrected_data.get("Lemak jenuh", "0")) if serving_size > 0: sugar_norm = (sugar_value / serving_size) * 100 fat_norm = (fat_value / serving_size) * 100 else: st.error("Takaran saji tidak valid untuk normalisasi.") sugar_norm, fat_norm = sugar_value, fat_value st.write("**Tabel Hasil Normalisasi per 100 g/ml**") data_tabel = { "Nutrisi": ["Gula", "Lemak jenuh"], "Nilai (per 100 g/ml)": [sugar_norm, fat_norm] } df_tabel = pd.DataFrame(data_tabel) st.table(df_tabel) # Hitung Grade def grade_from_value(value, thresholds): if value <= thresholds["A"]: return "Grade A" elif value <= thresholds["B"]: return "Grade B" elif value <= thresholds["C"]: return "Grade C" else: return "Grade D" thresholds_sugar = {"A": 1.0, "B": 5.0, "C": 10.0} thresholds_fat = {"A": 0.7, "B": 1.2, "C": 2.8} sugar_grade = grade_from_value(sugar_norm, thresholds_sugar) fat_grade = grade_from_value(fat_norm, thresholds_fat) grade_scores = {"Grade A": 1, "Grade B": 2, "Grade C": 3, "Grade D": 4} worst_score = max(grade_scores[sugar_grade], grade_scores[fat_grade]) inverse_scores = {v: k for k, v in grade_scores.items()} final_grade = inverse_scores[worst_score] st.write(f"**Grade Gula:** {sugar_grade}") st.write(f"**Grade Lemak Jenuh:** {fat_grade}") st.write(f"**Grade Akhir:** {final_grade}") def color_grade(grade_text): if grade_text == "Grade A": bg_color = "#2ecc71" elif grade_text == "Grade B": bg_color = "#f1c40f" elif grade_text == "Grade C": bg_color = "#e67e22" else: bg_color = "#e74c3c" return f"""
Nicholas Dominic, Mentor - LinkedIn
Tata Aditya Pamungkas, Machine Learning - LinkedIn
Raihan Hafiz, Web Dev - LinkedIn