Spaces:
Runtime error
Runtime error
import os | |
import re | |
import torch | |
import pandas as pd | |
from PyPDF2 import PdfReader | |
from transformers import AutoTokenizer, pipeline, AutoModelForSequenceClassification | |
from gradio import Interface, File | |
import gradio as gr | |
import spaces | |
# Load the tokenizer and model | |
led_tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reranker-v2-m3") | |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt") | |
# Load the model separately | |
model = AutoModelForSequenceClassification.from_pretrained("BAAI/bge-reranker-v2-m3") | |
# Move the model to CUDA if available | |
if torch.cuda.is_available(): | |
model = model.to("cuda") | |
# Function to clean text by keeping only alphanumeric characters and spaces | |
def clean_text(text): | |
return re.sub(r'[^a-zA-Z0-9\s]', '', text) | |
# Function to extract text from PDF files | |
def extract_text(pdf_file): | |
try: | |
pdf_reader = PdfReader(pdf_file) | |
if pdf_reader.is_encrypted: | |
print(f"Skipping encrypted file: {pdf_file}") | |
return None | |
text = '' | |
for page in pdf_reader.pages: | |
text += page.extract_text() or '' | |
return text | |
except Exception as e: | |
print(f"Error extracting text from {pdf_file}: {e}") | |
return None | |
# Function to split text into chunks of a specified size | |
def split_text(text, chunk_size=1024): | |
words = text.split() | |
for i in range(0, len(words), chunk_size): | |
yield ' '.join(words[i:i + chunk_size]) | |
# Function to classify text using LED model | |
def classify_text(text): | |
try: | |
return classifier(text)[0]['label'] | |
except IndexError: | |
return "Unable to classify" | |
# Function to summarize text using the summarizer model | |
def summarize_text(text, max_length=100, min_length=30): | |
try: | |
return summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text'] | |
except IndexError: | |
return "Unable to summarize" | |
# Function to extract a title-like summary from the beginning of the text | |
def extract_title(text, max_length=20): | |
try: | |
return summarizer(text, max_length=max_length, min_length=5, do_sample=False)[0]['summary_text'] | |
except IndexError: | |
return "Unable to extract title" | |
# Define the folder path and CSV file path | |
# output_folder_path = '/content/drive/My Drive/path_to_output' # Adjust this to your actual path | |
# Define the Gradio interface for file upload and download | |
def process_files(pdf_files): | |
data = [] | |
for pdf_file in pdf_files: | |
text = extract_text(pdf_file) | |
# Skip encrypted files | |
if text is None: | |
continue | |
# Extract a title from the beginning of the text | |
title_text = ' '.join(text.split()[:512]) # Take the first 512 tokens for title extraction | |
title = extract_title(title_text) | |
# Initialize placeholders for combined results | |
combined_abstract = [] | |
combined_cleaned_text = [] | |
# Split text into chunks and process each chunk | |
for chunk in split_text(text, chunk_size=512): | |
# Summarize the text chunk | |
abstract = summarize_text(chunk) | |
combined_abstract.append(abstract) | |
# Clean the text chunk | |
cleaned_text = clean_text(chunk) | |
combined_cleaned_text.append(cleaned_text) | |
# Combine results from all chunks | |
final_abstract = ' '.join(combined_abstract) | |
final_cleaned_text = ' '.join(combined_cleaned_text) | |
# Append the data to the list | |
data.append([title, final_abstract, final_cleaned_text]) | |
# Create a DataFrame from the data list | |
df = pd.DataFrame(data, columns=['Title', 'Abstract', 'Content']) | |
# Save the DataFrame to a CSV file | |
output_file_path = 'processed_pdfs.csv' | |
df.to_csv(output_file_path, index=False) | |
return output_file_path | |
# Gradio interface | |
pdf_input = gr.File(label="Upload PDF Files", file_types=[".pdf"], file_count="multiple") | |
csv_output = gr.File(label="Download CSV") | |
gr.Interface( | |
fn=process_files, | |
inputs=pdf_input, | |
outputs=csv_output, | |
title="Dataset creation", | |
description="Upload PDF files and get a summarized CSV file.", | |
article="""<p>This is an experimental app that allows you to create a dataset from research papers.</p> | |
<p>This app uses the allenai/led-base-16384-multi_lexsum-source-long and sshleifer/distilbart-cnn-12-6 AI models.</p> | |
<p>The output file is a CSV with 3 columns: title, abstract, and content.</p>""" | |
).launch(share=True) |