Creatingdataset / app.py
Yoxas's picture
Create app.py
5ec4eda verified
raw
history blame
3.87 kB
import os
import re
import PyPDF2
import pandas as pd
from transformers import pipeline, AutoTokenizer
import gradio as gr
# Function to clean text by keeping only alphanumeric characters and spaces
def clean_text(text):
return re.sub(r'[^a-zA-Z0-9\s]', '', text)
# Function to extract text from PDF files
def extract_text(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ''
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
return text
# Function to split text into chunks of a specified size
def split_text(text, chunk_size=1024):
words = text.split()
for i in range(0, len(words), chunk_size):
yield ' '.join(words[i:i + chunk_size])
# Load the LED tokenizer
led_tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long")
# Function to classify text using LED model
def classify_text(text):
classifier = pipeline("text-classification", model="allenai/led-base-16384-multi_lexsum-source-long", tokenizer=led_tokenizer, framework="pt")
try:
return classifier(text)[0]['label']
except IndexError:
return "Unable to classify"
# Function to summarize text using BGE-m3 model
def summarize_text(text, max_length=100, min_length=30):
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt")
try:
return summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text']
except IndexError:
return "Unable to summarize"
# Function to extract a title-like summary from the beginning of the text
def extract_title(text, max_length=20):
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt")
try:
return summarizer(text, max_length=max_length, min_length=5, do_sample=False)[0]['summary_text']
except IndexError:
return "Unable to extract title"
# Function to process PDF files and generate summaries
def process_pdfs(pdf_files):
data = []
for pdf_file in pdf_files:
text = extract_text(pdf_file)
# Extract a title from the beginning of the text
title_text = ' '.join(text.split()[:512]) # Take the first 512 tokens for title extraction
title = extract_title(title_text)
# Initialize placeholders for combined results
combined_abstract = []
combined_cleaned_text = []
# Split text into chunks and process each chunk
for chunk in split_text(text, chunk_size=512):
# Summarize the text chunk
abstract = summarize_text(chunk)
combined_abstract.append(abstract)
# Clean the text chunk
cleaned_text = clean_text(chunk)
combined_cleaned_text.append(cleaned_text)
# Combine results from all chunks
final_abstract = ' '.join(combined_abstract)
final_cleaned_text = ' '.join(combined_cleaned_text)
# Append the data to the list
data.append([title, final_abstract, final_cleaned_text])
# Create a DataFrame from the data list
df = pd.DataFrame(data, columns=['Title', 'Abstract', 'Content'])
# Save the DataFrame to a CSV file in the same folder as the source folder
csv_file_path = 'processed_pdfs.csv'
df.to_csv(csv_file_path, index=False)
return csv_file_path
# Gradio interface
pdf_input = gr.inputs.File(label="Upload PDF Files", type="file", multiple=True)
csv_output = gr.outputs.File(label="Download CSV")
gr.Interface(
fn=process_pdfs,
inputs=pdf_input,
outputs=csv_output,
title="PDF Summarizer",
description="Upload PDF files and get a summarized CSV file."
).launch()