Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,40 @@
|
|
1 |
-
import
|
2 |
-
import re
|
3 |
-
import torch
|
4 |
import pandas as pd
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
# Load the
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
#
|
42 |
-
|
43 |
-
words = text.split()
|
44 |
-
for i in range(0, len(words), chunk_size):
|
45 |
-
yield ' '.join(words[i:i + chunk_size])
|
46 |
-
|
47 |
-
# Function to classify text using LED model
|
48 |
-
@spaces.GPU(duration=120)
|
49 |
-
def classify_text(text):
|
50 |
-
try:
|
51 |
-
return classifier(text)[0]['label']
|
52 |
-
except IndexError:
|
53 |
-
return "Unable to classify"
|
54 |
-
|
55 |
-
# Function to summarize text using the summarizer model
|
56 |
-
@spaces.GPU(duration=120)
|
57 |
-
def summarize_text(text, max_length=100, min_length=30):
|
58 |
-
try:
|
59 |
-
return summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text']
|
60 |
-
except IndexError:
|
61 |
-
return "Unable to summarize"
|
62 |
-
|
63 |
-
# Function to extract a title-like summary from the beginning of the text
|
64 |
-
@spaces.GPU(duration=120)
|
65 |
-
def extract_title(text, max_length=20):
|
66 |
-
try:
|
67 |
-
return summarizer(text, max_length=max_length, min_length=5, do_sample=False)[0]['summary_text']
|
68 |
-
except IndexError:
|
69 |
-
return "Unable to extract title"
|
70 |
-
|
71 |
-
# Define the folder path and CSV file path
|
72 |
-
# output_folder_path = '/content/drive/My Drive/path_to_output' # Adjust this to your actual path
|
73 |
-
|
74 |
-
# Define the Gradio interface for file upload and download
|
75 |
-
@spaces.GPU(duration=120)
|
76 |
-
def process_files(pdf_files):
|
77 |
-
data = []
|
78 |
-
for pdf_file in pdf_files:
|
79 |
-
text = extract_text(pdf_file)
|
80 |
-
|
81 |
-
# Skip encrypted files
|
82 |
-
if text is None:
|
83 |
-
continue
|
84 |
-
|
85 |
-
# Extract a title from the beginning of the text
|
86 |
-
title_text = ' '.join(text.split()[:512]) # Take the first 512 tokens for title extraction
|
87 |
-
title = extract_title(title_text)
|
88 |
-
|
89 |
-
# Initialize placeholders for combined results
|
90 |
-
combined_abstract = []
|
91 |
-
combined_cleaned_text = []
|
92 |
-
|
93 |
-
# Split text into chunks and process each chunk
|
94 |
-
for chunk in split_text(text, chunk_size=512):
|
95 |
-
# Summarize the text chunk
|
96 |
-
abstract = summarize_text(chunk)
|
97 |
-
combined_abstract.append(abstract)
|
98 |
-
|
99 |
-
# Clean the text chunk
|
100 |
-
cleaned_text = clean_text(chunk)
|
101 |
-
combined_cleaned_text.append(cleaned_text)
|
102 |
-
|
103 |
-
# Combine results from all chunks
|
104 |
-
final_abstract = ' '.join(combined_abstract)
|
105 |
-
final_cleaned_text = ' '.join(combined_cleaned_text)
|
106 |
-
|
107 |
-
# Append the data to the list
|
108 |
-
data.append([title, final_abstract, final_cleaned_text])
|
109 |
-
|
110 |
-
# Create a DataFrame from the data list
|
111 |
-
df = pd.DataFrame(data, columns=['Title', 'Abstract', 'Content'])
|
112 |
-
|
113 |
-
# Save the DataFrame to a CSV file
|
114 |
-
output_file_path = 'processed_pdfs.csv'
|
115 |
-
df.to_csv(output_file_path, index=False)
|
116 |
-
|
117 |
-
return output_file_path
|
118 |
-
|
119 |
-
# Gradio interface
|
120 |
-
pdf_input = gr.File(label="Upload PDF Files", file_types=[".pdf"], file_count="multiple")
|
121 |
-
csv_output = gr.File(label="Download CSV")
|
122 |
-
|
123 |
-
gr.Interface(
|
124 |
-
fn=process_files,
|
125 |
-
inputs=pdf_input,
|
126 |
-
outputs=csv_output,
|
127 |
-
title="Dataset creation",
|
128 |
-
description="Upload PDF files and get a summarized CSV file.",
|
129 |
-
article="""<p>This is an experimental app that allows you to create a dataset from research papers.</p>
|
130 |
-
<p>This app uses the allenai/led-base-16384-multi_lexsum-source-long and sshleifer/distilbart-cnn-12-6 AI models.</p>
|
131 |
-
<p>The output file is a CSV with 3 columns: title, abstract, and content.</p>"""
|
132 |
-
).launch(share=True)
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
2 |
import pandas as pd
|
3 |
+
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
|
4 |
+
|
5 |
+
# Load the tokenizer and retriever
|
6 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
7 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)
|
8 |
+
|
9 |
+
# Load the model
|
10 |
+
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
|
11 |
+
|
12 |
+
# Tokenize the contexts and responses
|
13 |
+
inputs = tokenizer(contexts, return_tensors='pt', padding=True, truncation=True)
|
14 |
+
labels = tokenizer(responses, return_tensors='pt', padding=True, truncation=True)
|
15 |
+
|
16 |
+
# Load your dataset
|
17 |
+
df = pd.read_csv('your_dataset.csv')
|
18 |
+
|
19 |
+
# Ensure the dataset has the required columns for RAG
|
20 |
+
# For example, it should have 'context' and 'response' columns
|
21 |
+
contexts = df['Abstract'].tolist()
|
22 |
+
#responses = df['response'].tolist()
|
23 |
+
|
24 |
+
def generate_response(input_text):
|
25 |
+
input_ids = tokenizer([input_text], return_tensors='pt')['input_ids']
|
26 |
+
outputs = model.generate(input_ids)
|
27 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
28 |
+
return response
|
29 |
+
|
30 |
+
# Create the Gradio interface
|
31 |
+
iface = gr.Interface(
|
32 |
+
fn=generate_response,
|
33 |
+
inputs="text",
|
34 |
+
outputs="text",
|
35 |
+
title="RAG Chatbot",
|
36 |
+
description="A chatbot powered by Retrieval-Augmented Generation (RAG) model."
|
37 |
+
)
|
38 |
+
|
39 |
+
# Launch the interface
|
40 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|