import pandas as pd import torch from sentence_transformers import SentenceTransformer, util from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import gradio as gr import json import faiss import numpy as np import spaces # Ensure you have GPU support device = 'cuda' if torch.cuda.is_available() else 'cpu' # Load the CSV file with embeddings df = pd.read_csv('RBDx10kstats.csv') df['embedding'] = df['embedding'].apply(json.loads) # Convert JSON string back to list # Convert embeddings to a numpy array embeddings = np.array(df['embedding'].tolist(), dtype='float32') # Setup FAISS index = faiss.IndexFlatL2(embeddings.shape[1]) # dimension should match the embedding size index.add(embeddings) # Load the Sentence Transformer model sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device=device) # Load the LLaMA model for response generation llama_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") llama_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device) # Load the summarization model summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if device == 'cuda' else -1) # Define the function to find the most relevant document using FAISS @spaces.GPU(duration=120) def retrieve_relevant_doc(query): query_embedding = sentence_model.encode(query, convert_to_tensor=False) _, indices = index.search(np.array([query_embedding]), k=1) best_match_idx = indices[0][0] return df.iloc[best_match_idx]['Abstract'] # Define the function to generate a response @spaces.GPU(duration=120) def generate_response(query): relevant_doc = retrieve_relevant_doc(query) if len(relevant_doc) > 512: # Truncate long documents relevant_doc = summarizer(relevant_doc, max_length=4096, min_length=50, do_sample=False)[0]['summary_text'] input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:" inputs = llama_tokenizer(input_text, return_tensors="pt").to(device) # Set pad_token_id to eos_token_id to avoid the warning pad_token_id = llama_tokenizer.eos_token_id outputs = llama_model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=512, pad_token_id=pad_token_id ) response = llama_tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Create a Gradio interface iface = gr.Interface( fn=generate_response, inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."), outputs="text", title="RAG Chatbot", description="This chatbot retrieves relevant documents based on your query and generates responses using LLaMA." ) # Launch the Gradio interface iface.launch()