File size: 15,287 Bytes
aef7e33
 
b083e5f
aef7e33
 
 
4deb54c
 
 
 
 
aef7e33
4deb54c
aef7e33
4deb54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0aa55b
aef7e33
f0aa55b
 
 
 
 
b617e3c
38f5a66
f0aa55b
 
 
 
f17dec9
f0aa55b
 
 
 
 
aef7e33
4deb54c
aef7e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6eb236
aef7e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6eb236
 
aef7e33
 
c6eb236
aef7e33
 
 
c6eb236
 
aef7e33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4deb54c
 
c6eb236
 
 
 
 
 
 
4deb54c
 
 
 
 
 
 
 
 
 
 
 
 
c6eb236
4deb54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch
import pickle
from transformers import  AutoTokenizer , DistilBertForSequenceClassification
from transformers import BatchEncoding, PreTrainedTokenizerBase
from typing import Optional
from torch import Tensor
import numpy as np 
from random import shuffle
from Model import BERT
from Model import tokenizer , mult_token_id , cls_token_id , pad_token_id , max_pred , maxlen , sep_token_id 
from transformers import pipeline

device = "cpu"
# Load the model
def load_models():
    print("Loading DistilBERT model...")
    model = DistilBertForSequenceClassification.from_pretrained("DistillMDPI1/DistillMDPI1/saved_model")
    
    print("Loading BERT model...")
    neptune = BERT()
    device = "cpu"
    model_save_path = "Neptune/Neptune/model.pt"
    neptune.load_state_dict(torch.load(model_save_path, map_location=torch.device('cpu')))
    neptune.to(device)
    
    print("Loading speech recognition pipeline...")
    pipe = pipeline(
        "automatic-speech-recognition",
        model="openai/whisper-tiny.en",
        chunk_length_s=30,
        device=device,
    )
    print(pipe)
    # Charger le label encoder
    with open("DistillMDPI1/DistillMDPI1/label_encoder.pkl", "rb") as f:
        label_encoder = pickle.load(f)
    
    return model, neptune, pipe

class_labels = {
    16: ('vehicles','info' , '#4f9ef8'),
    10: ('environments','success' , '#0cbc87'),
    9: ('energies', 'danger', '#d6293e'),
    0: ('Physics', 'primary', '#0f6fec'),
    13: ('robotics', 'moss','#B1E5F2'),
    3: ('agriculture','agri' , '#a8c686'),
    11: ('ML', 'yellow', '#ffc107'),
    8: ('economies', 'warning' , '#f7c32e'),
    15: ('technologies','vanila' ,'#FDF0D5' ),
    12: ('mathematics','coffe' ,'#7f5539' ),
    14: ('sports', 'orange', '#fd7e14'),
    4: ('AI','cyan', '#0dcaf0'),
    6: ('Innovation','rosy' ,'#BF98A0'),
    5: ('Science','picton' ,'#5fa8d3' ),
    1: ('Societies','purple' , '#6f42c1'),
    2: ('administration','pink', '#d63384'),
    7: ('biology' ,'cambridge' , '#88aa99')}

def predict_class(text , model):
    # Tokenisation du texte
    inputs = transform_list_of_texts(text, tokenizer, 510, 510, 1, 2550)
    # Extraire le tenseur de la liste
    input_ids_tensor = inputs["input_ids"][0]
    attention_mask_tensor = inputs["attention_mask"][0]
    # Passage du texte à travers le modèle
    with torch.no_grad():
        outputs = model(input_ids=input_ids_tensor, attention_mask=attention_mask_tensor)

    # Application de la fonction softmax
    probabilities = torch.softmax(outputs.logits, dim=1)[0]

    # Identification de la classe majoritaire
    predicted_class_index = torch.argmax(probabilities).item()
    predicted_class = class_labels[predicted_class_index]

    # Créer un dictionnaire de pourcentages trié par probabilité
    sorted_percentages = {class_labels[idx]: probabilities[idx].item() * 100 for idx in range(len(class_labels))}
    sorted_percentages = dict(sorted(sorted_percentages.items(), key=lambda item: item[1], reverse=True))

    return predicted_class, sorted_percentages

def transform_list_of_texts(
    texts: list[str],
    tokenizer: PreTrainedTokenizerBase,
    chunk_size: int,
    stride: int,
    minimal_chunk_length: int,
    maximal_text_length: Optional[int] = None,
) -> BatchEncoding:
    model_inputs = [
        transform_single_text(text, tokenizer, chunk_size, stride, minimal_chunk_length, maximal_text_length)
        for text in texts
    ]
    input_ids = [model_input[0] for model_input in model_inputs]
    attention_mask = [model_input[1] for model_input in model_inputs]
    tokens = {"input_ids": input_ids, "attention_mask": attention_mask}
    return BatchEncoding(tokens)


def transform_single_text(
    text: str,
    tokenizer: PreTrainedTokenizerBase,
    chunk_size: int,
    stride: int,
    minimal_chunk_length: int,
    maximal_text_length: Optional[int],
) -> tuple[Tensor, Tensor]:
    """Transforms (the entire) text to model input of BERT model."""
    if maximal_text_length:
        tokens = tokenize_text_with_truncation(text, tokenizer, maximal_text_length)
    else:
        tokens = tokenize_whole_text(text, tokenizer)
    input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
    add_special_tokens_at_beginning_and_end(input_id_chunks, mask_chunks)
    add_padding_tokens(input_id_chunks, mask_chunks , chunk_size)
    input_ids, attention_mask = stack_tokens_from_all_chunks(input_id_chunks, mask_chunks)
    return input_ids, attention_mask


def tokenize_whole_text(text: str, tokenizer: PreTrainedTokenizerBase) -> BatchEncoding:
    """Tokenizes the entire text without truncation and without special tokens."""
    tokens = tokenizer(text, add_special_tokens=False, truncation=False, return_tensors="pt")
    return tokens


def tokenize_text_with_truncation(
    text: str, tokenizer: PreTrainedTokenizerBase, maximal_text_length: int
) -> BatchEncoding:
    """Tokenizes the text with truncation to maximal_text_length and without special tokens."""
    tokens = tokenizer(
        text, add_special_tokens=False, max_length=maximal_text_length, truncation=True, return_tensors="pt"
    )
    return tokens


def split_tokens_into_smaller_chunks(
    tokens: BatchEncoding,
    chunk_size: int,
    stride: int,
    minimal_chunk_length: int,
) -> tuple[list[Tensor], list[Tensor]]:
    """Splits tokens into overlapping chunks with given size and stride."""
    input_id_chunks = split_overlapping(tokens["input_ids"][0], chunk_size, stride, minimal_chunk_length)
    mask_chunks = split_overlapping(tokens["attention_mask"][0], chunk_size, stride, minimal_chunk_length)
    return input_id_chunks, mask_chunks


def add_special_tokens_at_beginning_and_end(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> None:
    """
    Adds special CLS token (token id = 101) at the beginning.
    Adds SEP token (token id = 102) at the end of each chunk.
    Adds corresponding attention masks equal to 1 (attention mask is boolean).
    """
    for i in range(len(input_id_chunks)):
        # adding CLS (token id 101) and SEP (token id 102) tokens
        input_id_chunks[i] = torch.cat([Tensor([101]), input_id_chunks[i], Tensor([102])])
        # adding attention masks  corresponding to special tokens
        mask_chunks[i] = torch.cat([Tensor([1]), mask_chunks[i], Tensor([1])])


def add_padding_tokens(input_id_chunks: list[Tensor], mask_chunks: list[Tensor] , chunk_size) -> None:
    """Adds padding tokens (token id = 0) at the end to make sure that all chunks have exactly 512 tokens."""
    for i in range(len(input_id_chunks)):
        # get required padding length
        pad_len = chunk_size + 2 - input_id_chunks[i].shape[0]
        # check if tensor length satisfies required chunk size
        if pad_len > 0:
            # if padding length is more than 0, we must add padding
            input_id_chunks[i] = torch.cat([input_id_chunks[i], Tensor([0] * pad_len)])
            mask_chunks[i] = torch.cat([mask_chunks[i], Tensor([0] * pad_len)])


def stack_tokens_from_all_chunks(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> tuple[Tensor, Tensor]:
    """Reshapes data to a form compatible with BERT model input."""
    input_ids = torch.stack(input_id_chunks)
    attention_mask = torch.stack(mask_chunks)

    return input_ids.long(), attention_mask.int()


def split_overlapping(tensor: Tensor, chunk_size: int, stride: int, minimal_chunk_length: int) -> list[Tensor]:
    """Helper function for dividing 1-dimensional tensors into overlapping chunks."""
    result = [tensor[i : i + chunk_size] for i in range(0, len(tensor), stride)]
    if len(result) > 1:
        # ignore chunks with less than minimal_length number of tokens
        result = [x for x in result if len(x) >= minimal_chunk_length]
    return result

## Voice part

def stack_tokens_from_all_chunks_for_inference(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> tuple[Tensor, Tensor]:
    """Reshapes data to a form compatible with BERT model input."""
    input_ids = torch.stack(input_id_chunks)
    attention_mask = torch.stack(mask_chunks)

    return input_ids.long(), attention_mask.int()

def transform_for_inference_text(text: str,
    tokenizer: PreTrainedTokenizerBase,
    chunk_size: int,
    stride: int,
    minimal_chunk_length: int,
    maximal_text_length: Optional[int],) -> BatchEncoding:
    if maximal_text_length:
        tokens = tokenize_text_with_truncation(text, tokenizer, maximal_text_length)
    else:
        tokens = tokenize_whole_text(text, tokenizer)
    input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
    add_special_tokens_at_beginning_and_end_inference(input_id_chunks, mask_chunks)
    add_padding_tokens_inference(input_id_chunks, mask_chunks, chunk_size)
    input_ids, attention_mask = stack_tokens_from_all_chunks_for_inference(input_id_chunks, mask_chunks)
    return {"input_ids": input_ids, "attention_mask": attention_mask}

def add_special_tokens_at_beginning_and_end_inference(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> None:
    """
    Adds special MULT token, CLS token at the beginning.
    Adds SEP token at the end of each chunk.
    Adds corresponding attention masks equal to 1 (attention mask is boolean).
    """
    for i in range(len(input_id_chunks)):
        # adding MULT, CLS, and SEP tokens
        input_id_chunks[i] = torch.cat([input_id_chunks[i]])
        # adding attention masks corresponding to special tokens
        mask_chunks[i] = torch.cat([mask_chunks[i]])

def add_padding_tokens_inference(input_id_chunks: list[Tensor], mask_chunks: list[Tensor], chunk_size: int) -> None:
    """Adds padding tokens at the end to make sure that all chunks have exactly chunk_size tokens."""
    pad_token_id = 0  # Assuming this is defined somewhere in your code
    for i in range(len(input_id_chunks)):
        # get required padding length
        pad_len = chunk_size - input_id_chunks[i].shape[0]
        # check if tensor length satisfies required chunk size
        if pad_len > 0:
            # if padding length is more than 0, we must add padding
            input_id_chunks[i] = torch.cat([input_id_chunks[i], torch.tensor([pad_token_id] * pad_len)])
            mask_chunks[i] = torch.cat([mask_chunks[i], torch.tensor([0] * pad_len)])

def prepare_text(tokens_splitted: BatchEncoding):
    batch = []
    sentences = []
    input_ids_list = tokens_splitted['input_ids']
    
    for i in range(0, len(input_ids_list), 2):  # Adjust loop to stop at second last index
        k = i + 1
        if k == len(input_ids_list):
            input_ids_a = input_ids_list[i]
            input_ids_a = [token for token in input_ids_a.view(-1).tolist() if token != pad_token_id]
            input_ids_b = []
            input_ids = [cls_token_id] + [mult_token_id] + input_ids_a + [sep_token_id] + [mult_token_id] + input_ids_b + [sep_token_id]
            text_input_a = tokenizer.decode(input_ids_a)
            sentences.append(text_input_a)
            segment_ids = [0] * (1 + 1 + len(input_ids_a) + 1) + [1] * (1 + len(input_ids_b) + 1)
            
            # MASK LM
            n_pred = min(max_pred, max(1, int(round(len(input_ids) * 0.15))))
            cand_masked_pos = [idx for idx, token in enumerate(input_ids) if token not in [cls_token_id, sep_token_id, mult_token_id]]
            shuffle(cand_masked_pos)
            masked_tokens, masked_pos = [], []
            for pos in cand_masked_pos[:n_pred]:
                masked_pos.append(pos)
                masked_tokens.append(input_ids[pos])
                input_ids[pos] = tokenizer.mask_token_id

            # Zero Padding
            n_pad = maxlen - len(input_ids)
            input_ids.extend([pad_token_id] * n_pad)
            segment_ids.extend([0] * n_pad)

            # Zero Padding for masked tokens
            if max_pred > n_pred:
                n_pad = max_pred - n_pred
                masked_tokens.extend([0] * n_pad)
                masked_pos.extend([0] * n_pad)
        else:
            input_ids_a = input_ids_list[i]  # Correct the indexing here
            input_ids_b = input_ids_list[k]  # Correct the indexing here
            input_ids_a = [token for token in input_ids_a.view(-1).tolist() if token != pad_token_id]
            input_ids_b = [token for token in input_ids_b.view(-1).tolist() if token != pad_token_id]
            input_ids = [cls_token_id] + [mult_token_id] + input_ids_a + [sep_token_id] + [mult_token_id] + input_ids_b + [sep_token_id]
            segment_ids = [0] * (1 + 1 + len(input_ids_a) + 1) + [1] * (1 + len(input_ids_b) + 1)
            text_input_a = tokenizer.decode(input_ids_a)
            text_input_b = tokenizer.decode(input_ids_b)
            sentences.append(text_input_a)
            sentences.append(text_input_b)

            # MASK LM
            n_pred = min(max_pred, max(1, int(round(len(input_ids) * 0.15))))
            cand_masked_pos = [idx for idx, token in enumerate(input_ids) if token not in [cls_token_id, sep_token_id, mult_token_id]]
            shuffle(cand_masked_pos)
            masked_tokens, masked_pos = [], []
            for pos in cand_masked_pos[:n_pred]:
                masked_pos.append(pos)
                masked_tokens.append(input_ids[pos])
                input_ids[pos] = tokenizer.mask_token_id

            # Zero Padding
            n_pad = maxlen - len(input_ids)
            input_ids.extend([pad_token_id] * n_pad)
            segment_ids.extend([0] * n_pad)

            # Zero Padding for masked tokens
            if max_pred > n_pred:
                n_pad = max_pred - n_pred
                masked_tokens.extend([0] * n_pad)
                masked_pos.extend([0] * n_pad)

        batch.append([input_ids, segment_ids, masked_pos])
    return batch, sentences

def inference(text: str):
    encoded_text = transform_for_inference_text(text, tokenizer, 125, 125, 1, 2550)
    batch, sentences = prepare_text(encoded_text)
    return batch, sentences

def predict(inference_batch,neptune , device = device):
    all_preds_mult1 = []
    neptune.eval()
    with torch.no_grad():
        for batch in inference_batch:
            input_ids = torch.tensor(batch[0], device=device, dtype=torch.long).unsqueeze(0)
            segment_ids = torch.tensor(batch[1], device=device, dtype=torch.long).unsqueeze(0)
            masked_pos = torch.tensor(batch[2], device=device, dtype=torch.long).unsqueeze(0)
            _, _, logits_mclsf1, logits_mclsf2 = neptune(input_ids, segment_ids, masked_pos)
            preds_mult1 = torch.argmax(logits_mclsf1, dim=1).cpu().detach().numpy()
            preds_mult2 = torch.argmax(logits_mclsf2, dim=1).cpu().detach().numpy()
            
            all_preds_mult1.extend(preds_mult1)
            all_preds_mult1.extend(preds_mult2)

    return all_preds_mult1

def align_predictions_with_sentences(sentences, preds):
    dc = {}  # Initialize an empty dictionary
    for sentence, pred in zip(sentences, preds):  # Iterate through sentences and predictions
        dc[sentence] = class_labels.get(pred, "Unknown")  # Look up the label for each prediction
    return dc