File size: 18,419 Bytes
4deb54c dbb882b d32d550 aef7e33 4deb54c d32d550 4deb54c aef7e33 d32d550 4deb54c baf039a d32d550 baf039a d479d0f 4deb54c d32d550 baf039a 4deb54c baf039a d32d550 4deb54c 1f593cd 4deb54c aef7e33 baf039a aef7e33 baf039a aef7e33 4deb54c dbb882b baf039a dbb882b aef7e33 baf039a aef7e33 baf039a aef7e33 4deb54c aef7e33 baf039a aef7e33 4deb54c aef7e33 4deb54c aef7e33 4deb54c dbb882b 4deb54c aef7e33 baf039a dbb882b baf039a dbb882b baf039a d32d550 baf039a d32d550 baf039a d32d550 baf039a d32d550 baf039a d32d550 baf039a d32d550 baf039a d32d550 dbb882b baf039a d32d550 baf039a d32d550 baf039a d32d550 baf039a d32d550 baf039a d32d550 baf039a 2305ddf baf039a aef7e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
from flask import Flask, render_template,request, redirect,url_for, jsonify , session
from helper_functions import predict_class ,predict_sentences_class, inference , predict , align_predictions_with_sentences , load_models , load_fr_models
from helper_functions import predict_fr_class, fr_inference , align_fr_predictions_with_sentences , transcribe_speech
import fitz # PyMuPDF
import os, shutil
import torch
import tempfile
from pydub import AudioSegment
import logging
import torchaudio
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'static/uploads'
device = "cpu"
# Global variables for models
global_model = None
global_neptune = None
global_pipe = None
global_fr_model = None
global_fr_neptune = None
global_fr_pipe = None
global_fr_wav2vec2_processor = None
global_fr_wav2vec2_model = None
def init_app():
global global_model, global_neptune, global_pipe
global global_fr_model, global_fr_neptune, global_fr_wav2vec2_processor, global_fr_wav2vec2_model
print("Loading English models...")
global_model, global_neptune, global_pipe = load_models()
print("Loading French models...")
global_fr_model, global_fr_neptune, global_fr_wav2vec2_processor, global_fr_wav2vec2_model = load_fr_models()
print("Models loaded successfully!")
init_app()
@app.route("/")
def home():
predict_class = ""
class_probabilities = dict()
chart_data = dict()
return render_template('pdf.html', class_probabilities= class_probabilities, predicted_class=predict_class,chart_data = chart_data)
@app.route('/pdf')
def pdf():
predict_class = ""
class_probabilities = dict()
chart_data = dict()
sentences_prediction = dict()
return render_template('pdf.html', class_probabilities= class_probabilities, predicted_class=predict_class,chart_data = chart_data,sentences_prediction=sentences_prediction)
@app.route('/pdf/upload' , methods = ['POST'])
def treatment():
global global_model , global_neptune
if request.method == 'POST' :
# Récupérer le fichier PDF de la requête
file = request.files['file']
filename = file.filename
# Enregistrer le fichier dans le répertoire de téléchargement
filepath = app.config['UPLOAD_FOLDER'] + "/" + filename
file.save(filepath)
# Ouvrir le fichier PDF
pdf_document = fitz.open(filepath)
# Initialiser une variable pour stocker le texte extrait
extracted_text = ""
# Boucler à travers chaque page pour extraire le texte
for page_num in range(len(pdf_document)):
# Récupérer l'objet de la page
page = pdf_document.load_page(page_num)
# Extraire le texte de la page
page_text = page.get_text()
# Ajouter le texte de la page à la variable d'extraction
extracted_text += f"\nPage {page_num + 1}:\n{page_text}"
# Fermer le fichier PDF
pdf_document.close()
# Prepare data for the chart
predicted_class , class_probabilities = predict_class([extracted_text] , global_model)
print(class_probabilities)
# Process the transcribed text
sentences_prediction = predict_sentences_class(extracted_text , global_model)
chart_data = {
'datasets': [{
'data': list(class_probabilities.values()),
'backgroundColor': [color[2] for color in class_probabilities.keys()],
'borderColor': [color[2] for color in class_probabilities.keys()]
}],
'labels': [label[0] for label in class_probabilities.keys()]
}
print(predict_class)
print(chart_data)
print(sentences_prediction)
# clear the uploads folder
for filename in os.listdir(app.config['UPLOAD_FOLDER']):
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))
return render_template('pdf.html',extracted_text = extracted_text, class_probabilities=class_probabilities, predicted_class=predicted_class, chart_data = chart_data,sentences_prediction=sentences_prediction)
return render_template('pdf.html')
## Sentence
@app.route('/sentence' , methods = ['GET' , 'POST'])
def sentence():
global global_model
if request.method == 'POST':
# Get the form data
text = [request.form['text']]
predicted_class , class_probabilities = predict_class(text , global_model)
# Prepare data for the chart
chart_data = {
'datasets': [{
'data': list(class_probabilities.values()),
'backgroundColor': [color[2 ] for color in class_probabilities.keys()],
'borderColor': [color[2] for color in class_probabilities.keys()]
}],
'labels': [label[0] for label in class_probabilities.keys()]
}
print(chart_data)
return render_template('response_sentence.html', text=text, class_probabilities=class_probabilities, predicted_class=predicted_class,chart_data = chart_data)
# Render the initial form page
return render_template('sentence.html')
## Voice
@app.route("/voice_backup")
def slu_backup():
input_file = "static/uploads/2022.jep-architectures-neuronales.pdf"
# Ouvrir le fichier PDF
pdf_document = fitz.open(input_file)
# Initialiser une variable pour stocker le texte extrait
extracted_text = ""
# Boucler à travers chaque page pour extraire le texte
for page_num in range(len(pdf_document)):
# Récupérer l'objet de la page
page = pdf_document.load_page(page_num)
# Extraire le texte de la page
page_text = page.get_text()
# Ajouter le texte de la page à la variable d'extraction
extracted_text += f"\nPage {page_num + 1}:\n{page_text}"
# Fermer le fichier PDF
pdf_document.close()
# Prepare data for the chart
inference_batch, sentences = inference(extracted_text)
predictions = predict(inference_batch)
sentences_prediction = align_predictions_with_sentences(sentences, predictions)
predicted_class , class_probabilities = predict_class([extracted_text] , global_model)
chart_data = {
'datasets': [{
'data': list(class_probabilities.values()),
'backgroundColor': [color[2 ] for color in class_probabilities.keys()],
'borderColor': [color[2] for color in class_probabilities.keys()]
}],
'labels': [label[0] for label in class_probabilities.keys()]
}
print(class_probabilities)
print(chart_data)
print(sentences_prediction)
return render_template('voice_backup.html',extracted_text = extracted_text, class_probabilities=class_probabilities, predicted_class=predicted_class, chart_data = chart_data, sentences_prediction = sentences_prediction)
logging.basicConfig(level=logging.DEBUG)
@app.route("/voice", methods=['GET', 'POST'])
def slu():
global global_neptune, global_pipe, global_model
if request.method == 'POST':
logging.debug("Received POST request")
audio_file = request.files.get('audio')
if audio_file:
logging.debug(f"Received audio file: {audio_file.filename}")
# Save audio data to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
audio_file.save(temp_audio)
temp_audio_path = temp_audio.name
logging.debug(f"Saved audio to temporary file: {temp_audio_path}")
try:
# Transcribe audio using Whisper
result = global_pipe(temp_audio_path)
extracted_text = result["text"]
logging.debug(f"Transcribed text: {extracted_text}")
# Process the transcribed text
####inference_batch, sentences = inference(extracted_text)
####predictions = predict(inference_batch, global_neptune)
sentences_prediction = predict_sentences_class(extracted_text , global_model)
predicted_class, class_probabilities = predict_class([extracted_text], global_model)
chart_data = {
'datasets': [{
'data': list(class_probabilities.values()),
'backgroundColor': [color[2] for color in class_probabilities.keys()],
'borderColor': [color[2] for color in class_probabilities.keys()]
}],
'labels': [label[0] for label in class_probabilities.keys()]
}
response_data = {
'extracted_text': extracted_text,
'class_probabilities' : class_probabilities,
'predicted_class': predicted_class,
'chart_data': chart_data,
'sentences_prediction': sentences_prediction
}
logging.debug(f"Prepared response data: {response_data}")
return render_template('voice.html',
class_probabilities= class_probabilities,
predicted_class= predicted_class,
chart_data= chart_data,
sentences_prediction=sentences_prediction)
except Exception as e:
logging.error(f"Error processing audio: {str(e)}")
return jsonify({'error': str(e)}), 500
finally:
# Remove temporary file
os.unlink(temp_audio_path)
else:
logging.error("No audio file received")
return jsonify({'error': 'No audio file received'}), 400
# For GET request
logging.debug("Received GET request")
return render_template('voice.html',
class_probabilities={},
predicted_class=[""],
chart_data={},
sentences_prediction={})
## French Pages
@app.route('/pdf_fr')
def pdf_fr():
predict_class = ""
class_probabilities = dict()
chart_data = dict()
return render_template('pdf_fr.html', class_probabilities= class_probabilities, predicted_class=predict_class,chart_data = chart_data)
@app.route('/pdf_fr/upload' , methods = ['POST'])
def treatment_fr():
global global_fr_neptune , global_fr_model
if request.method == 'POST' :
# Récupérer le fichier PDF de la requête
file = request.files['file']
filename = file.filename
# Enregistrer le fichier dans le répertoire de téléchargement
filepath = app.config['UPLOAD_FOLDER'] + "/" + filename
file.save(filepath)
# Ouvrir le fichier PDF
pdf_document = fitz.open(filepath)
# Initialiser une variable pour stocker le texte extrait
extracted_text = ""
# Boucler à travers chaque page pour extraire le texte
for page_num in range(len(pdf_document)):
# Récupérer l'objet de la page
page = pdf_document.load_page(page_num)
# Extraire le texte de la page
page_text = page.get_text()
# Ajouter le texte de la page à la variable d'extraction
extracted_text += f"\nPage {page_num + 1}:\n{page_text}"
# Fermer le fichier PDF
pdf_document.close()
# Process the text
####inference_batch, sentences = fr_inference(extracted_text)
####predictions = predict(inference_batch, global_fr_neptune)
sentences_prediction = predict_sentences_class(extracted_text , global_fr_model)
# Prepare data for the chart
predicted_class , class_probabilities = predict_fr_class([extracted_text] , global_fr_model)
chart_data = {
'datasets': [{
'data': list(class_probabilities.values()),
'backgroundColor': [color[2] for color in class_probabilities.keys()],
'borderColor': [color[2] for color in class_probabilities.keys()]
}],
'labels': [label[0] for label in class_probabilities.keys()]
}
print(predict_class)
print(chart_data)
# clear the uploads folder
for filename in os.listdir(app.config['UPLOAD_FOLDER']):
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))
return render_template('pdf_fr.html',extracted_text = extracted_text, class_probabilities=class_probabilities, predicted_class=predicted_class, chart_data = chart_data, sentences_prediction=sentences_prediction)
return render_template('pdf_fr.html')
@app.route('/sentence_fr' , methods = ['GET' , 'POST'])
def sentence_fr():
global global_fr_model
if request.method == 'POST':
# Get the form data
text = [request.form['text']]
predicted_class , class_probabilities = predict_fr_class(text , global_fr_model)
# Prepare data for the chart
chart_data = {
'datasets': [{
'data': list(class_probabilities.values()),
'backgroundColor': [color[2 ] for color in class_probabilities.keys()],
'borderColor': [color[2] for color in class_probabilities.keys()]
}],
'labels': [label[0] for label in class_probabilities.keys()]
}
print(predicted_class)
print(chart_data)
return render_template('response_fr_sentence.html', text=text, class_probabilities=class_probabilities, predicted_class=predicted_class,chart_data = chart_data)
# Render the initial form page
return render_template('sentence_fr.html')
from pydub import AudioSegment
import io
@app.route("/voice_fr", methods=['GET', 'POST'])
def slu_fr():
global global_fr_neptune, global_fr_model, global_fr_wav2vec2_processor, global_fr_wav2vec2_model
if request.method == 'POST':
logging.info("Received POST request for /voice_fr")
audio_file = request.files.get('audio')
if audio_file:
logging.info(f"Received audio file: {audio_file.filename}")
# Lire le contenu du fichier audio
audio_data = audio_file.read()
# Convertir l'audio en WAV si nécessaire
try:
audio = AudioSegment.from_file(io.BytesIO(audio_data))
audio = audio.set_frame_rate(16000).set_channels(1)
# Sauvegarder l'audio converti dans un fichier temporaire
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
audio.export(temp_audio.name, format="wav")
temp_audio_path = temp_audio.name
logging.info(f"Converted and saved audio to temporary file: {temp_audio_path}")
except Exception as e:
logging.error(f"Error converting audio: {str(e)}")
return jsonify({'error': 'Unable to process audio file'}), 400
try:
# Transcrire l'audio en utilisant la fonction de helper_functions
extracted_text = transcribe_speech(temp_audio_path, global_fr_wav2vec2_processor, global_fr_wav2vec2_model)
logging.info(f"Transcribed text: {extracted_text}")
# Traiter le texte transcrit
####inference_batch, sentences = fr_inference(extracted_text)
####predictions = predict(inference_batch, global_fr_neptune)
sentences_prediction = predict_sentences_class(extracted_text , global_fr_model)
predicted_class, class_probabilities = predict_fr_class([extracted_text], global_fr_model)
chart_data = {
'datasets': [{
'data': list(class_probabilities.values()),
'backgroundColor': [color[2] for color in class_probabilities.keys()],
'borderColor': [color[2] for color in class_probabilities.keys()]
}],
'labels': [label[0] for label in class_probabilities.keys()]
}
response_data = {
'extracted_text': extracted_text,
'class_probabilities': class_probabilities,
'predicted_class': predicted_class,
'chart_data': chart_data,
'sentences_prediction': sentences_prediction
}
logging.info(f"Prepared response data: {response_data}")
return render_template('voice_fr.html',
class_probabilities=class_probabilities,
predicted_class=predicted_class,
chart_data=chart_data,
sentences_prediction=sentences_prediction)
except Exception as e:
logging.error(f"Error processing audio: {str(e)}")
return jsonify({'error': str(e)}), 500
finally:
# Supprimer le fichier temporaire
os.unlink(temp_audio_path)
else:
logging.error("No audio file received")
return jsonify({'error': 'No audio file received'}), 400
# Pour la requête GET
logging.info("Received GET request for /voice_fr")
return render_template('voice_fr.html',
class_probabilities={},
predicted_class=[""],
chart_data={},
sentences_prediction={})
if __name__ == '__main__':
app.run(debug=True) |