File size: 32,139 Bytes
aef7e33 baf039a aef7e33 4deb54c baf039a 4deb54c baf039a 4deb54c d32d550 aef7e33 4deb54c aef7e33 4deb54c dbb882b 4deb54c f0aa55b baf039a d32d550 834b97c baf039a dbb882b baf039a dbb882b aef7e33 f0aa55b b617e3c 38f5a66 f0aa55b f17dec9 f0aa55b aef7e33 dbb882b aef7e33 dbb882b aef7e33 dbb882b aef7e33 dbb882b aef7e33 dbb882b aef7e33 dbb882b aef7e33 dbb882b aef7e33 c6eb236 aef7e33 c6eb236 aef7e33 c6eb236 aef7e33 c6eb236 aef7e33 4deb54c c6eb236 4deb54c c6eb236 4deb54c baf039a d32d550 baf039a d32d550 baf039a d32d550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
import torch
import pickle
from transformers import AutoTokenizer , DistilBertForSequenceClassification , CamembertForSequenceClassification
from transformers import BatchEncoding, PreTrainedTokenizerBase
from typing import Optional
from torch import Tensor
import numpy as np
from random import shuffle
from Model import BERT
from FrModel import FR_BERT
from Model import tokenizer , mult_token_id , cls_token_id , pad_token_id , max_pred , maxlen , sep_token_id
from FrModel import fr_tokenizer , fr_mult_token_id , fr_cls_token_id , fr_pad_token_id , fr_sep_token_id
from transformers import pipeline
from transformers import AutoModelForCTC, Wav2Vec2Processor
import torchaudio
import logging
import soundfile as sf
device = "cpu"
# Load the model
def load_models():
print("Loading DistilBERT model...")
model = DistilBertForSequenceClassification.from_pretrained("DistillMDPI1/DistillMDPI1/saved_model")
print("Loading BERT model...")
neptune = BERT()
device = "cpu"
model_save_path = "neptune_270_papers/neptune_270_papers/model.pt"
neptune.load_state_dict(torch.load(model_save_path, map_location=torch.device('cpu')))
neptune.to(device)
print("Loading speech recognition pipeline...")
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-tiny.en",
chunk_length_s=30,
device=device,
)
print(pipe)
# Charger le label encoder
with open("DistillMDPI1/DistillMDPI1/label_encoder.pkl", "rb") as f:
label_encoder = pickle.load(f)
return model, neptune, pipe
def load_fr_models():
print("Loading Camembert model")
fr_model = CamembertForSequenceClassification.from_pretrained("Camembert/Camembert/saved_model")
print("Loading BERT model...")
fr_neptune = FR_BERT()
device = "cpu"
model_save_path = "fr_neptune/fr_neptune/model.pt"
fr_neptune.load_state_dict(torch.load(model_save_path, map_location=torch.device('cpu')))
fr_neptune.to(device)
print("Loading Wav2Vec2 model for French...")
wav2vec2_processor = Wav2Vec2Processor.from_pretrained("bhuang/asr-wav2vec2-french")
wav2vec2_model = AutoModelForCTC.from_pretrained("bhuang/asr-wav2vec2-french").to(device)
return fr_model, fr_neptune, wav2vec2_processor, wav2vec2_model
fr_class_labels = {0: ('Physics', 'primary', '#5e7cc8'), 1: ('AI','cyan', '#0dcaf0'),
2: ('economies', 'warning' , '#f7c32e'), 3: ('environments','success' , '#0cbc87'),
4: ('sports', 'orange', '#fd7e14')}
class_labels = {
16: ('vehicles','info' , '#4f9ef8'),
10: ('environments','success' , '#0cbc87'),
9: ('energies', 'danger', '#d6293e'),
0: ('Physics', 'primary', '#0f6fec'),
13: ('robotics', 'moss','#B1E5F2'),
3: ('agriculture','agri' , '#a8c686'),
11: ('ML', 'yellow', '#ffc107'),
8: ('economies', 'warning' , '#f7c32e'),
15: ('technologies','vanila' ,'#FDF0D5' ),
12: ('mathematics','coffe' ,'#7f5539' ),
14: ('sports', 'orange', '#fd7e14'),
4: ('AI','cyan', '#0dcaf0'),
6: ('Innovation','rosy' ,'#BF98A0'),
5: ('Science','picton' ,'#5fa8d3' ),
1: ('Societies','purple' , '#6f42c1'),
2: ('administration','pink', '#d63384'),
7: ('biology' ,'cambridge' , '#88aa99')}
def predict_class(text,model):
# Tokenisation du texte
inputs = transform_list_of_texts([text], tokenizer, 510, 510, 1, 2550)
# Initialiser une liste pour stocker les probabilités de chaque échantillon
all_probabilities = []
# Passage du texte à travers le modèle
model.eval()
with torch.no_grad():
for i, sample in enumerate(inputs['input_ids']):
for j in range(len(sample)):
input_ids_tensor = torch.tensor(sample[j], device=device).unsqueeze(0)
attention_mask_tensor = torch.tensor(inputs['attention_mask'][i][j], device=device).unsqueeze(0)
outputs = model(input_ids=input_ids_tensor, attention_mask=attention_mask_tensor)
# Application de la fonction softmax
probabilities = torch.softmax(outputs.logits, dim=1)[0]
all_probabilities.append(probabilities)
# Calculer la moyenne des probabilités si nous avons plusieurs échantillons
if len(all_probabilities) > 1:
mean_probabilities = torch.stack(all_probabilities).mean(dim=0)
else:
mean_probabilities = all_probabilities[0]
# Identification de la classe majoritaire
predicted_class_index = torch.argmax(mean_probabilities).item()
predicted_class = class_labels[predicted_class_index]
# Créer un dictionnaire de pourcentages trié par probabilité
sorted_percentages = {class_labels[idx]: mean_probabilities[idx].item() * 100 for idx in range(len(class_labels))}
print(sorted_percentages)
sorted_percentages = dict(sorted(sorted_percentages.items(), key=lambda item: item[1], reverse=True))
return predicted_class, sorted_percentages
def predict_class_for_Neptune(text,model):
# Tokenize the text
encoded_text = transform_for_inference_text(text, tokenizer, 125, 125, 1, 2550)
batch, sentences = prepare_text(encoded_text)
# Process the text through the model
model.eval()
all_probabilities = []
with torch.no_grad():
for sample in batch:
input_ids = torch.tensor(sample[0], device=device, dtype=torch.long).unsqueeze(0)
segment_ids = torch.tensor(sample[1], device=device, dtype=torch.long).unsqueeze(0)
masked_pos = torch.tensor(sample[2], device=device, dtype=torch.long).unsqueeze(0)
_, _, logits_mclsf1, logits_mclsf2 = model(input_ids, segment_ids, masked_pos)
probabilities1 = torch.softmax(logits_mclsf1, dim=1)[0]
probabilities2 = torch.softmax(logits_mclsf2, dim=1)[0]
all_probabilities.extend([probabilities1, probabilities2])
# Aggregate probabilities
aggregated_probabilities = torch.stack(all_probabilities).mean(dim=0)
# Identify the majority class
predicted_class_index = torch.argmax(aggregated_probabilities).item()
predicted_class = class_labels[predicted_class_index]
# Create a sorted dictionary of percentages
sorted_percentages = {class_labels[idx]: aggregated_probabilities[idx].item() * 100 for idx in range(len(class_labels))}
sorted_percentages = dict(sorted(sorted_percentages.items(), key=lambda item: item[1], reverse=True))
return predicted_class, sorted_percentages
def predict_sentences_class(text,model):
# Tokenisation du texte
inputs = transform_list_of_texts([text], tokenizer, 510, 510, 1, 2550)
aligned_predictions = {}
# Passage du texte à travers le modèle
model.eval()
with torch.no_grad():
for i, sample in enumerate(inputs['input_ids']):
for j in range(len(sample)):
input_ids_tensor = sample[j].clone().detach().to(device).unsqueeze(0)
attention_mask_tensor = inputs['attention_mask'][i][j].clone().detach().to(device).unsqueeze(0)
# Decode the sentence
sentence = tokenizer.decode(input_ids_tensor[0], skip_special_tokens=True)
# Passage du texte à travers le modèle
outputs = model(input_ids=input_ids_tensor, attention_mask=attention_mask_tensor)
# Identification de la classe prédite
predicted_class_index = torch.argmax(outputs.logits, dim=1).item()
predicted_class = class_labels[predicted_class_index] # Get only the class name
# Ajouter la prédiction au dictionnaire
if sentence not in aligned_predictions:
aligned_predictions[sentence] = predicted_class
return aligned_predictions
def transform_list_of_texts(
texts: list[str],
tokenizer: PreTrainedTokenizerBase,
chunk_size: int,
stride: int,
minimal_chunk_length: int,
maximal_text_length: Optional[int] = None,
) -> BatchEncoding:
model_inputs = [
transform_single_text(text, tokenizer, chunk_size, stride, minimal_chunk_length, maximal_text_length)
for text in texts
]
input_ids = [model_input[0] for model_input in model_inputs]
attention_mask = [model_input[1] for model_input in model_inputs]
tokens = {"input_ids": input_ids, "attention_mask": attention_mask}
return BatchEncoding(tokens)
def transform_single_text(
text: str,
tokenizer: PreTrainedTokenizerBase,
chunk_size: int,
stride: int,
minimal_chunk_length: int,
maximal_text_length: Optional[int],
) -> tuple[Tensor, Tensor]:
"""Transforms (the entire) text to model input of BERT model."""
if maximal_text_length:
tokens = tokenize_text_with_truncation(text, tokenizer, maximal_text_length)
else:
tokens = tokenize_whole_text(text, tokenizer)
input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
add_special_tokens_at_beginning_and_end(input_id_chunks, mask_chunks)
add_padding_tokens(input_id_chunks, mask_chunks , chunk_size)
input_ids, attention_mask = stack_tokens_from_all_chunks(input_id_chunks, mask_chunks)
return input_ids, attention_mask
def tokenize_whole_text(text: str, tokenizer: PreTrainedTokenizerBase) -> BatchEncoding:
"""Tokenizes the entire text without truncation and without special tokens."""
tokens = tokenizer(text, add_special_tokens=False, truncation=False, return_tensors="pt")
return tokens
def tokenize_text_with_truncation(
text: str, tokenizer: PreTrainedTokenizerBase, maximal_text_length: int
) -> BatchEncoding:
"""Tokenizes the text with truncation to maximal_text_length and without special tokens."""
tokens = tokenizer(
text, add_special_tokens=False, max_length=maximal_text_length, truncation=True, return_tensors="pt"
)
return tokens
def split_tokens_into_smaller_chunks(
tokens: BatchEncoding,
chunk_size: int,
stride: int,
minimal_chunk_length: int,
) -> tuple[list[Tensor], list[Tensor]]:
"""Splits tokens into overlapping chunks with given size and stride."""
input_id_chunks = split_overlapping(tokens["input_ids"][0], chunk_size, stride, minimal_chunk_length)
mask_chunks = split_overlapping(tokens["attention_mask"][0], chunk_size, stride, minimal_chunk_length)
return input_id_chunks, mask_chunks
def add_special_tokens_at_beginning_and_end(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> None:
"""
Adds special CLS token (token id = 101) at the beginning.
Adds SEP token (token id = 102) at the end of each chunk.
Adds corresponding attention masks equal to 1 (attention mask is boolean).
"""
for i in range(len(input_id_chunks)):
# adding CLS (token id 101) and SEP (token id 102) tokens
input_id_chunks[i] = torch.cat([Tensor([101]), input_id_chunks[i], Tensor([102])])
# adding attention masks corresponding to special tokens
mask_chunks[i] = torch.cat([Tensor([1]), mask_chunks[i], Tensor([1])])
def add_padding_tokens(input_id_chunks: list[Tensor], mask_chunks: list[Tensor] , chunk_size) -> None:
"""Adds padding tokens (token id = 0) at the end to make sure that all chunks have exactly 512 tokens."""
for i in range(len(input_id_chunks)):
# get required padding length
pad_len = chunk_size + 2 - input_id_chunks[i].shape[0]
# check if tensor length satisfies required chunk size
if pad_len > 0:
# if padding length is more than 0, we must add padding
input_id_chunks[i] = torch.cat([input_id_chunks[i], Tensor([0] * pad_len)])
mask_chunks[i] = torch.cat([mask_chunks[i], Tensor([0] * pad_len)])
def stack_tokens_from_all_chunks(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> tuple[Tensor, Tensor]:
"""Reshapes data to a form compatible with BERT model input."""
input_ids = torch.stack(input_id_chunks)
attention_mask = torch.stack(mask_chunks)
return input_ids.long(), attention_mask.int()
def split_overlapping(tensor: Tensor, chunk_size: int, stride: int, minimal_chunk_length: int) -> list[Tensor]:
"""Helper function for dividing 1-dimensional tensors into overlapping chunks."""
result = [tensor[i : i + chunk_size] for i in range(0, len(tensor), stride)]
if len(result) > 1:
# ignore chunks with less than minimal_length number of tokens
result = [x for x in result if len(x) >= minimal_chunk_length]
return result
## Voice part
def stack_tokens_from_all_chunks_for_inference(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> tuple[Tensor, Tensor]:
"""Reshapes data to a form compatible with BERT model input."""
input_ids = torch.stack(input_id_chunks)
attention_mask = torch.stack(mask_chunks)
return input_ids.long(), attention_mask.int()
def transform_for_inference_text(text: str,
tokenizer: PreTrainedTokenizerBase,
chunk_size: int,
stride: int,
minimal_chunk_length: int,
maximal_text_length: Optional[int],) -> BatchEncoding:
if maximal_text_length:
tokens = tokenize_text_with_truncation(text, tokenizer, maximal_text_length)
else:
tokens = tokenize_whole_text(text, tokenizer)
input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
add_special_tokens_at_beginning_and_end_inference(input_id_chunks, mask_chunks)
add_padding_tokens_inference(input_id_chunks, mask_chunks, chunk_size)
input_ids, attention_mask = stack_tokens_from_all_chunks_for_inference(input_id_chunks, mask_chunks)
return {"input_ids": input_ids, "attention_mask": attention_mask}
def add_special_tokens_at_beginning_and_end_inference(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> None:
"""
Adds special MULT token, CLS token at the beginning.
Adds SEP token at the end of each chunk.
Adds corresponding attention masks equal to 1 (attention mask is boolean).
"""
for i in range(len(input_id_chunks)):
# adding MULT, CLS, and SEP tokens
input_id_chunks[i] = torch.cat([input_id_chunks[i]])
# adding attention masks corresponding to special tokens
mask_chunks[i] = torch.cat([mask_chunks[i]])
def add_padding_tokens_inference(input_id_chunks: list[Tensor], mask_chunks: list[Tensor], chunk_size: int) -> None:
"""Adds padding tokens at the end to make sure that all chunks have exactly chunk_size tokens."""
pad_token_id = 0 # Assuming this is defined somewhere in your code
for i in range(len(input_id_chunks)):
# get required padding length
pad_len = chunk_size - input_id_chunks[i].shape[0]
# check if tensor length satisfies required chunk size
if pad_len > 0:
# if padding length is more than 0, we must add padding
input_id_chunks[i] = torch.cat([input_id_chunks[i], torch.tensor([pad_token_id] * pad_len)])
mask_chunks[i] = torch.cat([mask_chunks[i], torch.tensor([0] * pad_len)])
def prepare_text(tokens_splitted: BatchEncoding):
batch = []
sentences = []
input_ids_list = tokens_splitted['input_ids']
for i in range(0, len(input_ids_list), 2): # Adjust loop to stop at second last index
k = i + 1
if k == len(input_ids_list):
input_ids_a = input_ids_list[i]
input_ids_a = [token for token in input_ids_a.view(-1).tolist() if token != pad_token_id]
input_ids_b = []
input_ids = [cls_token_id] + [mult_token_id] + input_ids_a + [sep_token_id] + [mult_token_id] + input_ids_b + [sep_token_id]
text_input_a = tokenizer.decode(input_ids_a)
sentences.append(text_input_a)
segment_ids = [0] * (1 + 1 + len(input_ids_a) + 1) + [1] * (1 + len(input_ids_b) + 1)
# MASK LM
n_pred = min(max_pred, max(1, int(round(len(input_ids) * 0.15))))
cand_masked_pos = [idx for idx, token in enumerate(input_ids) if token not in [cls_token_id, sep_token_id, mult_token_id]]
shuffle(cand_masked_pos)
masked_tokens, masked_pos = [], []
for pos in cand_masked_pos[:n_pred]:
masked_pos.append(pos)
masked_tokens.append(input_ids[pos])
input_ids[pos] = tokenizer.mask_token_id
# Zero Padding
n_pad = maxlen - len(input_ids)
input_ids.extend([pad_token_id] * n_pad)
segment_ids.extend([0] * n_pad)
# Zero Padding for masked tokens
if max_pred > n_pred:
n_pad = max_pred - n_pred
masked_tokens.extend([0] * n_pad)
masked_pos.extend([0] * n_pad)
else:
input_ids_a = input_ids_list[i] # Correct the indexing here
input_ids_b = input_ids_list[k] # Correct the indexing here
input_ids_a = [token for token in input_ids_a.view(-1).tolist() if token != pad_token_id]
input_ids_b = [token for token in input_ids_b.view(-1).tolist() if token != pad_token_id]
input_ids = [cls_token_id] + [mult_token_id] + input_ids_a + [sep_token_id] + [mult_token_id] + input_ids_b + [sep_token_id]
segment_ids = [0] * (1 + 1 + len(input_ids_a) + 1) + [1] * (1 + len(input_ids_b) + 1)
text_input_a = tokenizer.decode(input_ids_a)
text_input_b = tokenizer.decode(input_ids_b)
sentences.append(text_input_a)
sentences.append(text_input_b)
# MASK LM
n_pred = min(max_pred, max(1, int(round(len(input_ids) * 0.15))))
cand_masked_pos = [idx for idx, token in enumerate(input_ids) if token not in [cls_token_id, sep_token_id, mult_token_id]]
shuffle(cand_masked_pos)
masked_tokens, masked_pos = [], []
for pos in cand_masked_pos[:n_pred]:
masked_pos.append(pos)
masked_tokens.append(input_ids[pos])
input_ids[pos] = tokenizer.mask_token_id
# Zero Padding
n_pad = maxlen - len(input_ids)
input_ids.extend([pad_token_id] * n_pad)
segment_ids.extend([0] * n_pad)
# Zero Padding for masked tokens
if max_pred > n_pred:
n_pad = max_pred - n_pred
masked_tokens.extend([0] * n_pad)
masked_pos.extend([0] * n_pad)
batch.append([input_ids, segment_ids, masked_pos])
return batch, sentences
def inference(text: str):
encoded_text = transform_for_inference_text(text, tokenizer, 125, 125, 1, 2550)
batch, sentences = prepare_text(encoded_text)
return batch, sentences
def predict(inference_batch,neptune , device = device):
all_preds_mult1 = []
neptune.eval()
with torch.no_grad():
for batch in inference_batch:
input_ids = torch.tensor(batch[0], device=device, dtype=torch.long).unsqueeze(0)
segment_ids = torch.tensor(batch[1], device=device, dtype=torch.long).unsqueeze(0)
masked_pos = torch.tensor(batch[2], device=device, dtype=torch.long).unsqueeze(0)
_, _, logits_mclsf1, logits_mclsf2 = neptune(input_ids, segment_ids, masked_pos)
preds_mult1 = torch.argmax(logits_mclsf1, dim=1).cpu().detach().numpy()
preds_mult2 = torch.argmax(logits_mclsf2, dim=1).cpu().detach().numpy()
all_preds_mult1.extend(preds_mult1)
all_preds_mult1.extend(preds_mult2)
return all_preds_mult1
def align_predictions_with_sentences(sentences, preds):
dc = {} # Initialize an empty dictionary
for sentence, pred in zip(sentences, preds): # Iterate through sentences and predictions
dc[sentence] = class_labels.get(pred, "Unknown") # Look up the label for each prediction
return dc
#### FRENCH PREPROCESSING ####
def predict_fr_class(text , model):
# Tokenisation du texte
inputs = transform_list_of_fr_texts(text, fr_tokenizer, 126, 30, 1, 2550)
# Extraire le tenseur de la liste
input_ids_tensor = inputs["input_ids"][0]
attention_mask_tensor = inputs["attention_mask"][0]
# Passage du texte à travers le modèle
with torch.no_grad():
outputs = model(input_ids=input_ids_tensor, attention_mask=attention_mask_tensor)
# Application de la fonction softmax
probabilities = torch.softmax(outputs.logits, dim=1)[0]
# Identification de la classe majoritaire
predicted_class_index = torch.argmax(probabilities).item()
predicted_class = fr_class_labels[predicted_class_index]
# Créer un dictionnaire de pourcentages trié par probabilité
sorted_percentages = {fr_class_labels[idx]: probabilities[idx].item() * 100 for idx in range(len(fr_class_labels))}
sorted_percentages = dict(sorted(sorted_percentages.items(), key=lambda item: item[1], reverse=True))
return predicted_class, sorted_percentages
def prepare_fr_text(tokens_splitted: BatchEncoding):
batch = []
sentences = []
input_ids_list = tokens_splitted['input_ids']
for i in range(0, len(input_ids_list), 2): # Adjust loop to stop at second last index
k = i + 1
if k == len(input_ids_list):
input_ids_a = input_ids_list[i]
input_ids_a = [token for token in input_ids_a.view(-1).tolist() if token != pad_token_id]
input_ids_b = []
input_ids = [fr_cls_token_id] + [fr_mult_token_id] + input_ids_a + [fr_sep_token_id] + [fr_mult_token_id] + input_ids_b + [fr_sep_token_id]
text_input_a = fr_tokenizer.decode(input_ids_a , skip_special_tokens=True)
sentences.append(text_input_a)
segment_ids = [0] * (1 + 1 + len(input_ids_a) + 1) + [1] * (1 + len(input_ids_b) + 1)
# MASK LM
n_pred = min(max_pred, max(1, int(round(len(input_ids) * 0.15))))
cand_masked_pos = [idx for idx, token in enumerate(input_ids) if token not in [fr_cls_token_id, fr_sep_token_id, fr_mult_token_id]]
shuffle(cand_masked_pos)
masked_tokens, masked_pos = [], []
for pos in cand_masked_pos[:n_pred]:
masked_pos.append(pos)
masked_tokens.append(input_ids[pos])
input_ids[pos] = fr_tokenizer.mask_token_id
# Zero Padding
n_pad = maxlen - len(input_ids)
input_ids.extend([fr_pad_token_id] * n_pad)
segment_ids.extend([0] * n_pad)
# Zero Padding for masked tokens
if max_pred > n_pred:
n_pad = max_pred - n_pred
masked_tokens.extend([0] * n_pad)
masked_pos.extend([0] * n_pad)
else:
input_ids_a = input_ids_list[i] # Correct the indexing here
input_ids_b = input_ids_list[k] # Correct the indexing here
input_ids_a = [token for token in input_ids_a.view(-1).tolist() if token != pad_token_id]
input_ids_b = [token for token in input_ids_b.view(-1).tolist() if token != pad_token_id]
input_ids = [fr_cls_token_id] + [fr_mult_token_id] + input_ids_a + [fr_sep_token_id] + [fr_mult_token_id] + input_ids_b + [fr_sep_token_id]
segment_ids = [0] * (1 + 1 + len(input_ids_a) + 1) + [1] * (1 + len(input_ids_b) + 1)
text_input_a = fr_tokenizer.decode(input_ids_a , skip_special_tokens=True)
text_input_b = fr_tokenizer.decode(input_ids_b, skip_special_tokens=True)
sentences.append(text_input_a)
sentences.append(text_input_b)
# MASK LM
n_pred = min(max_pred, max(1, int(round(len(input_ids) * 0.15))))
cand_masked_pos = [idx for idx, token in enumerate(input_ids) if token not in [fr_cls_token_id, fr_sep_token_id, fr_mult_token_id]]
shuffle(cand_masked_pos)
masked_tokens, masked_pos = [], []
for pos in cand_masked_pos[:n_pred]:
masked_pos.append(pos)
masked_tokens.append(input_ids[pos])
input_ids[pos] = fr_tokenizer.mask_token_id
# Zero Padding
n_pad = maxlen - len(input_ids)
input_ids.extend([fr_pad_token_id] * n_pad)
segment_ids.extend([0] * n_pad)
# Zero Padding for masked tokens
if max_pred > n_pred:
n_pad = max_pred - n_pred
masked_tokens.extend([0] * n_pad)
masked_pos.extend([0] * n_pad)
batch.append([input_ids, segment_ids, masked_pos])
return batch, sentences
def fr_inference(text: str):
encoded_text = transform_for_inference_fr_text(text, fr_tokenizer, 125, 125, 1, 2550)
batch, sentences = prepare_fr_text(encoded_text)
return batch, sentences
def align_fr_predictions_with_sentences(sentences, preds):
dc = {} # Initialize an empty dictionary
for sentence, pred in zip(sentences, preds): # Iterate through sentences and predictions
dc[sentence] = fr_class_labels.get(pred, "Unknown") # Look up the label for each prediction
return dc
def transform_for_inference_fr_text(text: str,
tokenizer: PreTrainedTokenizerBase,
chunk_size: int,
stride: int,
minimal_chunk_length: int,
maximal_text_length: Optional[int],) -> BatchEncoding:
if maximal_text_length:
tokens = tokenize_text_with_truncation(text, tokenizer, maximal_text_length)
else:
tokens = tokenize_whole_text(text, tokenizer)
input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
add_special_tokens_at_beginning_and_end_inference(input_id_chunks, mask_chunks)
add_padding_fr_tokens_inference(input_id_chunks, mask_chunks, chunk_size)
input_ids, attention_mask = stack_tokens_from_all_chunks_for_inference(input_id_chunks, mask_chunks)
return {"input_ids": input_ids, "attention_mask": attention_mask}
def add_padding_fr_tokens_inference(input_id_chunks: list[Tensor], mask_chunks: list[Tensor], chunk_size: int) -> None:
"""Adds padding tokens at the end to make sure that all chunks have exactly chunk_size tokens."""
pad_token_id = 1 # Assuming this is defined somewhere in your code
for i in range(len(input_id_chunks)):
# get required padding length
pad_len = chunk_size - input_id_chunks[i].shape[0]
# check if tensor length satisfies required chunk size
if pad_len > 0:
# if padding length is more than 0, we must add padding
input_id_chunks[i] = torch.cat([input_id_chunks[i], torch.tensor([pad_token_id] * pad_len)])
mask_chunks[i] = torch.cat([mask_chunks[i], torch.tensor([0] * pad_len)])
def transform_list_of_fr_texts(
texts: list[str],
tokenizer: PreTrainedTokenizerBase,
chunk_size: int,
stride: int,
minimal_chunk_length: int,
maximal_text_length: Optional[int] = None,
) -> BatchEncoding:
model_inputs = [
transform_single_fr_text(text, tokenizer, chunk_size, stride, minimal_chunk_length, maximal_text_length)
for text in texts
]
input_ids = [model_input[0] for model_input in model_inputs]
attention_mask = [model_input[1] for model_input in model_inputs]
tokens = {"input_ids": input_ids, "attention_mask": attention_mask}
return BatchEncoding(tokens)
def transform_single_fr_text(
text: str,
tokenizer: PreTrainedTokenizerBase,
chunk_size: int,
stride: int,
minimal_chunk_length: int,
maximal_text_length: Optional[int],
) -> tuple[Tensor, Tensor]:
"""Transforms (the entire) text to model input of BERT model."""
if maximal_text_length:
tokens = tokenize_text_with_truncation(text, tokenizer, maximal_text_length)
else:
tokens = tokenize_whole_text(text, tokenizer)
input_id_chunks, mask_chunks = split_tokens_into_smaller_chunks(tokens, chunk_size, stride, minimal_chunk_length)
add_fr_special_tokens_at_beginning_and_end(input_id_chunks, mask_chunks)
add_padding_tokens(input_id_chunks, mask_chunks , chunk_size)
input_ids, attention_mask = stack_tokens_from_all_chunks(input_id_chunks, mask_chunks)
return input_ids, attention_mask
def add_fr_special_tokens_at_beginning_and_end(input_id_chunks: list[Tensor], mask_chunks: list[Tensor]) -> None:
"""
Adds special CLS token (token id = 101) at the beginning.
Adds SEP token (token id = 102) at the end of each chunk.
Adds corresponding attention masks equal to 1 (attention mask is boolean).
"""
for i in range(len(input_id_chunks)):
# adding CLS (token id 101) and SEP (token id 102) tokens
input_id_chunks[i] = torch.cat([Tensor([5]), input_id_chunks[i], Tensor([6])])
# adding attention masks corresponding to special tokens
mask_chunks[i] = torch.cat([Tensor([1]), mask_chunks[i], Tensor([1])])
def transcribe_speech(audio_path, wav2vec2_processor, wav2vec2_model):
logging.info(f"Starting transcription of {audio_path}")
try:
# Try loading with torchaudio first
waveform, sample_rate = torchaudio.load(audio_path)
waveform = waveform.squeeze().numpy()
logging.info(f"Audio loaded with torchaudio. Shape: {waveform.shape}, Sample rate: {sample_rate}")
except Exception as e:
logging.warning(f"torchaudio failed to load the audio. Trying with soundfile. Error: {str(e)}")
try:
# If torchaudio fails, try with soundfile
waveform, sample_rate = sf.read(audio_path)
waveform = torch.from_numpy(waveform).float()
logging.info(f"Audio loaded with soundfile. Shape: {waveform.shape}, Sample rate: {sample_rate}")
except Exception as e:
logging.error(f"Both torchaudio and soundfile failed to load the audio. Error: {str(e)}")
raise ValueError("Unable to load the audio file.")
# Ensure waveform is 1D
if waveform.ndim > 1:
waveform = np.mean(waveform, axis=0) # Changed from axis=1 to axis=0
logging.info(f"Waveform reduced to 1D. New shape: {waveform.shape}")
# Resample if necessary
if sample_rate != wav2vec2_processor.feature_extractor.sampling_rate:
resampler = torchaudio.transforms.Resample(sample_rate, wav2vec2_processor.feature_extractor.sampling_rate)
waveform = resampler(torch.from_numpy(waveform).float())
logging.info(f"Audio resampled to {wav2vec2_processor.feature_extractor.sampling_rate}Hz")
# Normalize
try:
input_values = wav2vec2_processor(waveform, sampling_rate=wav2vec2_processor.feature_extractor.sampling_rate, return_tensors="pt").input_values
logging.info(f"Input values shape after processing: {input_values.shape}")
except Exception as e:
logging.error(f"Error during audio processing: {str(e)}")
raise
# Ensure input_values is 2D (batch_size, sequence_length)
input_values = input_values.squeeze()
if input_values.dim() == 0: # If it's a scalar, unsqueeze twice
input_values = input_values.unsqueeze(0).unsqueeze(0)
elif input_values.dim() == 1: # If it's 1D, unsqueeze once
input_values = input_values.unsqueeze(0)
logging.info(f"Final input values shape: {input_values.shape}")
try:
with torch.inference_mode():
logits = wav2vec2_model(input_values.to(device)).logits
logging.info(f"Model inference successful. Logits shape: {logits.shape}")
except Exception as e:
logging.error(f"Error during model inference: {str(e)}")
raise
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentence = wav2vec2_processor.batch_decode(predicted_ids)
logging.info(f"Transcription complete. Result: {predicted_sentence[0]}")
return predicted_sentence[0] |