import torch.nn as nn # 残差块 class IRBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, use_se=True): super(IRBlock, self).__init__() self.bn0 = nn.BatchNorm2d(inplanes) self.conv1 = nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(inplanes) self.prelu = nn.PReLU() self.conv2 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample # downsample 对输入特征图大小进行减半处理 self.stride = stride self.use_se = use_se if self.use_se: self.se = SEBlock(planes) # 残差块里首先有 2 个相同输出通道数的 卷积层, # 每个卷积层后接一个批量归一化层和 ReLU 激活函数*, # 然后我们将输入跳过这 2 个卷积运算后直接加在最后的 ReLU 激活函数*前. # *此文件中是 PReLU 激活函数 # PReLU 和 ReLU 的区别主要是前者在 输入小于 0 的部分加了一个系数 a, # 若 a ==0, PReLU 退化为 ReLU;若 a 很小(比如0.01) ,PReLU 退化为 LReLU, # 有实验证明,与ReLU相比,LReLU对最终的结果几乎没什么影响。 def forward(self, x): residual = x out = self.bn0(x) out = self.conv1(out) out = self.bn1(out) out = self.prelu(out) out = self.conv2(out) out = self.bn2(out) if self.use_se: out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.prelu(out) return out class SEBlock(nn.Module): def __init__(self, channel, reduction=16): super(SEBlock, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.PReLU(), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class ResNet(nn.Module): def __init__(self, block, layers, use_se=True): self.inplanes = 64 self.use_se = use_se super(ResNet, self).__init__() # 所有 ResNet 网络的输入由一个大卷积核+最大池化组成,极大减少了存储所需大小 self.conv1 = nn.Conv2d(1, 64, kernel_size=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.prelu = nn.PReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=3) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.pool = nn.AdaptiveMaxPool2d((1, 1)) self.bn4 = nn.BatchNorm2d(512) self.dropout = nn.Dropout() self.flatten = nn.Flatten() self.fc5 = nn.Linear(512, 512) self.bn5 = nn.BatchNorm1d(512) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion),) layers = [block(self.inplanes, planes, stride, downsample, use_se=self.use_se)] self.inplanes = planes for i in range(1, blocks): layers.append(block(self.inplanes, planes, use_se=self.use_se)) return nn.Sequential(*layers) # 规定了网络数据的流向 def forward(self, x): # 输入 x = self.conv1(x) x = self.bn1(x) x = self.prelu(x) x = self.maxpool(x) # 中间卷积 x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) # 输出 x = self.pool(x) x = self.bn4(x) x = self.dropout(x) x = self.flatten(x) x = self.fc5(x) x = self.bn5(x) return x # 3,4,6,3 是 ResNet34 卷积部分的配置,至于为什么要用这个配置没有解释清楚 def resnet34(use_se=True): model = ResNet(IRBlock, [3, 4, 6, 3], use_se=use_se) return model