|
from toolbox import CatchException, report_execption, write_results_to_file |
|
from toolbox import update_ui |
|
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive |
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency |
|
|
|
|
|
def read_and_clean_pdf_text(fp): |
|
""" |
|
**输入参数说明** |
|
- `fp`:需要读取和清理文本的pdf文件路径 |
|
|
|
**输出参数说明** |
|
- `meta_txt`:清理后的文本内容字符串 |
|
- `page_one_meta`:第一页清理后的文本内容列表 |
|
|
|
**函数功能** |
|
读取pdf文件并清理其中的文本内容,清理规则包括: |
|
- 提取所有块元的文本信息,并合并为一个字符串 |
|
- 去除短块(字符数小于100)并替换为回车符 |
|
- 清理多余的空行 |
|
- 合并小写字母开头的段落块并替换为空格 |
|
- 清除重复的换行 |
|
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔 |
|
""" |
|
import fitz |
|
import re |
|
import numpy as np |
|
|
|
with fitz.open(fp) as doc: |
|
meta_txt = [] |
|
meta_font = [] |
|
for index, page in enumerate(doc): |
|
|
|
text_areas = page.get_text("dict") |
|
|
|
|
|
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( |
|
'- ', '') for t in text_areas['blocks'] if 'lines' in t]) |
|
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']]) |
|
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t]) |
|
if index == 0: |
|
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( |
|
'- ', '') for t in text_areas['blocks'] if 'lines' in t] |
|
|
|
def 把字符太少的块清除为回车(meta_txt): |
|
for index, block_txt in enumerate(meta_txt): |
|
if len(block_txt) < 100: |
|
meta_txt[index] = '\n' |
|
return meta_txt |
|
meta_txt = 把字符太少的块清除为回车(meta_txt) |
|
|
|
def 清理多余的空行(meta_txt): |
|
for index in reversed(range(1, len(meta_txt))): |
|
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n': |
|
meta_txt.pop(index) |
|
return meta_txt |
|
meta_txt = 清理多余的空行(meta_txt) |
|
|
|
def 合并小写开头的段落块(meta_txt): |
|
def starts_with_lowercase_word(s): |
|
pattern = r"^[a-z]+" |
|
match = re.match(pattern, s) |
|
if match: |
|
return True |
|
else: |
|
return False |
|
for _ in range(100): |
|
for index, block_txt in enumerate(meta_txt): |
|
if starts_with_lowercase_word(block_txt): |
|
if meta_txt[index-1] != '\n': |
|
meta_txt[index-1] += ' ' |
|
else: |
|
meta_txt[index-1] = '' |
|
meta_txt[index-1] += meta_txt[index] |
|
meta_txt[index] = '\n' |
|
return meta_txt |
|
meta_txt = 合并小写开头的段落块(meta_txt) |
|
meta_txt = 清理多余的空行(meta_txt) |
|
|
|
meta_txt = '\n'.join(meta_txt) |
|
|
|
for _ in range(5): |
|
meta_txt = meta_txt.replace('\n\n', '\n') |
|
|
|
|
|
meta_txt = meta_txt.replace('\n', '\n\n') |
|
|
|
return meta_txt, page_one_meta |
|
|
|
|
|
@CatchException |
|
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt, web_port): |
|
import glob |
|
import os |
|
|
|
|
|
chatbot.append([ |
|
"函数插件功能?", |
|
"批量总结PDF文档。函数插件贡献者: Binary-Husky"]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
try: |
|
import fitz |
|
import tiktoken |
|
except: |
|
report_execption(chatbot, history, |
|
a=f"解析项目: {txt}", |
|
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。") |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
return |
|
|
|
|
|
history = [] |
|
|
|
|
|
if os.path.exists(txt): |
|
project_folder = txt |
|
else: |
|
if txt == "": |
|
txt = '空空如也的输入栏' |
|
report_execption(chatbot, history, |
|
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
return |
|
|
|
|
|
file_manifest = [f for f in glob.glob( |
|
f'{project_folder}/**/*.pdf', recursive=True)] |
|
|
|
|
|
if len(file_manifest) == 0: |
|
report_execption(chatbot, history, |
|
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}") |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
return |
|
|
|
|
|
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt) |
|
|
|
|
|
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, sys_prompt): |
|
import os |
|
import tiktoken |
|
TOKEN_LIMIT_PER_FRAGMENT = 1600 |
|
generated_conclusion_files = [] |
|
for index, fp in enumerate(file_manifest): |
|
|
|
file_content, page_one = read_and_clean_pdf_text(fp) |
|
|
|
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf |
|
from toolbox import get_conf |
|
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL')) |
|
def get_token_num(txt): return len(enc.encode(txt)) |
|
|
|
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( |
|
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT) |
|
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( |
|
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4) |
|
|
|
paper_meta = page_one_fragments[0].split('introduction')[0].split( |
|
'Introduction')[0].split('INTRODUCTION')[0] |
|
|
|
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( |
|
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", |
|
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", |
|
llm_kwargs=llm_kwargs, |
|
chatbot=chatbot, history=[], |
|
sys_prompt="Your job is to collect information from materials。", |
|
) |
|
|
|
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( |
|
inputs_array=[ |
|
f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments], |
|
inputs_show_user_array=[f"" for _ in paper_fragments], |
|
llm_kwargs=llm_kwargs, |
|
chatbot=chatbot, |
|
history_array=[[paper_meta] for _ in paper_fragments], |
|
sys_prompt_array=[ |
|
"请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments], |
|
max_workers=16 |
|
) |
|
|
|
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n'] |
|
final.extend(gpt_response_collection) |
|
create_report_file_name = f"{os.path.basename(fp)}.trans.md" |
|
res = write_results_to_file(final, file_name=create_report_file_name) |
|
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}') |
|
chatbot.append((f"{fp}完成了吗?", res)) |
|
yield from update_ui(chatbot=chatbot, history=chatbot) |
|
|
|
|
|
import shutil |
|
for pdf_path in generated_conclusion_files: |
|
|
|
rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}' |
|
if os.path.exists(rename_file): |
|
os.remove(rename_file) |
|
shutil.copyfile(pdf_path, rename_file) |
|
if os.path.exists(pdf_path): |
|
os.remove(pdf_path) |
|
chatbot.append(("给出输出文件清单", str(generated_conclusion_files))) |
|
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg) |
|
|