|
import markdown |
|
import importlib |
|
import time |
|
import inspect |
|
import re |
|
import os |
|
import base64 |
|
import gradio |
|
import shutil |
|
import glob |
|
import math |
|
from latex2mathml.converter import convert as tex2mathml |
|
from functools import wraps, lru_cache |
|
pj = os.path.join |
|
default_user_name = 'default_user' |
|
""" |
|
======================================================================== |
|
第一部分 |
|
函数插件输入输出接驳区 |
|
- ChatBotWithCookies: 带Cookies的Chatbot类,为实现更多强大的功能做基础 |
|
- ArgsGeneralWrapper: 装饰器函数,用于重组输入参数,改变输入参数的顺序与结构 |
|
- update_ui: 刷新界面用 yield from update_ui(chatbot, history) |
|
- CatchException: 将插件中出的所有问题显示在界面上 |
|
- HotReload: 实现插件的热更新 |
|
- trimmed_format_exc: 打印traceback,为了安全而隐藏绝对地址 |
|
======================================================================== |
|
""" |
|
|
|
class ChatBotWithCookies(list): |
|
def __init__(self, cookie): |
|
""" |
|
cookies = { |
|
'top_p': top_p, |
|
'temperature': temperature, |
|
'lock_plugin': bool, |
|
"files_to_promote": ["file1", "file2"], |
|
"most_recent_uploaded": { |
|
"path": "uploaded_path", |
|
"time": time.time(), |
|
"time_str": "timestr", |
|
} |
|
} |
|
""" |
|
self._cookies = cookie |
|
|
|
def write_list(self, list): |
|
for t in list: |
|
self.append(t) |
|
|
|
def get_list(self): |
|
return [t for t in self] |
|
|
|
def get_cookies(self): |
|
return self._cookies |
|
|
|
|
|
def ArgsGeneralWrapper(f): |
|
""" |
|
装饰器函数,用于重组输入参数,改变输入参数的顺序与结构。 |
|
""" |
|
def decorated(request: gradio.Request, cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg, *args): |
|
txt_passon = txt |
|
if txt == "" and txt2 != "": txt_passon = txt2 |
|
|
|
if request.username is not None: |
|
user_name = request.username |
|
else: |
|
user_name = default_user_name |
|
cookies.update({ |
|
'top_p':top_p, |
|
'api_key': cookies['api_key'], |
|
'llm_model': llm_model, |
|
'temperature':temperature, |
|
'user_name': user_name, |
|
}) |
|
llm_kwargs = { |
|
'api_key': cookies['api_key'], |
|
'llm_model': llm_model, |
|
'top_p':top_p, |
|
'max_length': max_length, |
|
'temperature':temperature, |
|
'client_ip': request.client.host, |
|
'most_recent_uploaded': cookies.get('most_recent_uploaded') |
|
} |
|
plugin_kwargs = { |
|
"advanced_arg": plugin_advanced_arg, |
|
} |
|
chatbot_with_cookie = ChatBotWithCookies(cookies) |
|
chatbot_with_cookie.write_list(chatbot) |
|
|
|
if cookies.get('lock_plugin', None) is None: |
|
|
|
if len(args) == 0: |
|
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, request) |
|
else: |
|
yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args) |
|
else: |
|
|
|
module, fn_name = cookies['lock_plugin'].split('->') |
|
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name) |
|
yield from f_hot_reload(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, request) |
|
|
|
final_cookies = chatbot_with_cookie.get_cookies() |
|
|
|
if len(args) != 0 and 'files_to_promote' in final_cookies and len(final_cookies['files_to_promote']) > 0: |
|
chatbot_with_cookie.append(["检测到**滞留的缓存文档**,请及时处理。", "请及时点击“**保存当前对话**”获取所有滞留文档。"]) |
|
yield from update_ui(chatbot_with_cookie, final_cookies['history'], msg="检测到被滞留的缓存文档") |
|
return decorated |
|
|
|
|
|
def update_ui(chatbot, history, msg='正常', **kwargs): |
|
""" |
|
刷新用户界面 |
|
""" |
|
assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时, 可用clear将其清空, 然后用for+append循环重新赋值。" |
|
cookies = chatbot.get_cookies() |
|
|
|
cookies.update({'history': history}) |
|
|
|
if cookies.get('lock_plugin', None): |
|
label = cookies.get('llm_model', "") + " | " + "正在锁定插件" + cookies.get('lock_plugin', None) |
|
chatbot_gr = gradio.update(value=chatbot, label=label) |
|
if cookies.get('label', "") != label: cookies['label'] = label |
|
elif cookies.get('label', None): |
|
chatbot_gr = gradio.update(value=chatbot, label=cookies.get('llm_model', "")) |
|
cookies['label'] = None |
|
else: |
|
chatbot_gr = chatbot |
|
|
|
yield cookies, chatbot_gr, history, msg |
|
|
|
def update_ui_lastest_msg(lastmsg, chatbot, history, delay=1): |
|
""" |
|
刷新用户界面 |
|
""" |
|
if len(chatbot) == 0: chatbot.append(["update_ui_last_msg", lastmsg]) |
|
chatbot[-1] = list(chatbot[-1]) |
|
chatbot[-1][-1] = lastmsg |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
time.sleep(delay) |
|
|
|
|
|
def trimmed_format_exc(): |
|
import os, traceback |
|
str = traceback.format_exc() |
|
current_path = os.getcwd() |
|
replace_path = "." |
|
return str.replace(current_path, replace_path) |
|
|
|
def CatchException(f): |
|
""" |
|
装饰器函数,捕捉函数f中的异常并封装到一个生成器中返回,并显示到聊天当中。 |
|
""" |
|
|
|
@wraps(f) |
|
def decorated(main_input, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, *args, **kwargs): |
|
try: |
|
yield from f(main_input, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, *args, **kwargs) |
|
except Exception as e: |
|
from check_proxy import check_proxy |
|
from toolbox import get_conf |
|
proxies = get_conf('proxies') |
|
tb_str = '```\n' + trimmed_format_exc() + '```' |
|
if len(chatbot_with_cookie) == 0: |
|
chatbot_with_cookie.clear() |
|
chatbot_with_cookie.append(["插件调度异常", "异常原因"]) |
|
chatbot_with_cookie[-1] = (chatbot_with_cookie[-1][0], |
|
f"[Local Message] 插件调用出错: \n\n{tb_str} \n\n当前代理可用性: \n\n{check_proxy(proxies)}") |
|
yield from update_ui(chatbot=chatbot_with_cookie, history=history, msg=f'异常 {e}') |
|
return decorated |
|
|
|
|
|
def HotReload(f): |
|
""" |
|
HotReload的装饰器函数,用于实现Python函数插件的热更新。 |
|
函数热更新是指在不停止程序运行的情况下,更新函数代码,从而达到实时更新功能。 |
|
在装饰器内部,使用wraps(f)来保留函数的元信息,并定义了一个名为decorated的内部函数。 |
|
内部函数通过使用importlib模块的reload函数和inspect模块的getmodule函数来重新加载并获取函数模块, |
|
然后通过getattr函数获取函数名,并在新模块中重新加载函数。 |
|
最后,使用yield from语句返回重新加载过的函数,并在被装饰的函数上执行。 |
|
最终,装饰器函数返回内部函数。这个内部函数可以将函数的原始定义更新为最新版本,并执行函数的新版本。 |
|
""" |
|
if get_conf('PLUGIN_HOT_RELOAD'): |
|
@wraps(f) |
|
def decorated(*args, **kwargs): |
|
fn_name = f.__name__ |
|
f_hot_reload = getattr(importlib.reload(inspect.getmodule(f)), fn_name) |
|
yield from f_hot_reload(*args, **kwargs) |
|
return decorated |
|
else: |
|
return f |
|
|
|
|
|
""" |
|
======================================================================== |
|
第二部分 |
|
其他小工具: |
|
- write_history_to_file: 将结果写入markdown文件中 |
|
- regular_txt_to_markdown: 将普通文本转换为Markdown格式的文本。 |
|
- report_exception: 向chatbot中添加简单的意外错误信息 |
|
- text_divide_paragraph: 将文本按照段落分隔符分割开,生成带有段落标签的HTML代码。 |
|
- markdown_convertion: 用多种方式组合,将markdown转化为好看的html |
|
- format_io: 接管gradio默认的markdown处理方式 |
|
- on_file_uploaded: 处理文件的上传(自动解压) |
|
- on_report_generated: 将生成的报告自动投射到文件上传区 |
|
- clip_history: 当历史上下文过长时,自动截断 |
|
- get_conf: 获取设置 |
|
- select_api_key: 根据当前的模型类别,抽取可用的api-key |
|
======================================================================== |
|
""" |
|
|
|
def get_reduce_token_percent(text): |
|
""" |
|
* 此函数未来将被弃用 |
|
""" |
|
try: |
|
|
|
pattern = r"(\d+)\s+tokens\b" |
|
match = re.findall(pattern, text) |
|
EXCEED_ALLO = 500 |
|
max_limit = float(match[0]) - EXCEED_ALLO |
|
current_tokens = float(match[1]) |
|
ratio = max_limit/current_tokens |
|
assert ratio > 0 and ratio < 1 |
|
return ratio, str(int(current_tokens-max_limit)) |
|
except: |
|
return 0.5, '不详' |
|
|
|
|
|
def write_history_to_file(history, file_basename=None, file_fullname=None, auto_caption=True): |
|
""" |
|
将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。 |
|
""" |
|
import os |
|
import time |
|
if file_fullname is None: |
|
if file_basename is not None: |
|
file_fullname = pj(get_log_folder(), file_basename) |
|
else: |
|
file_fullname = pj(get_log_folder(), f'GPT-Academic-{gen_time_str()}.md') |
|
os.makedirs(os.path.dirname(file_fullname), exist_ok=True) |
|
with open(file_fullname, 'w', encoding='utf8') as f: |
|
f.write('# GPT-Academic Report\n') |
|
for i, content in enumerate(history): |
|
try: |
|
if type(content) != str: content = str(content) |
|
except: |
|
continue |
|
if i % 2 == 0 and auto_caption: |
|
f.write('## ') |
|
try: |
|
f.write(content) |
|
except: |
|
|
|
f.write(content.encode('utf-8', 'ignore').decode()) |
|
f.write('\n\n') |
|
res = os.path.abspath(file_fullname) |
|
return res |
|
|
|
|
|
def regular_txt_to_markdown(text): |
|
""" |
|
将普通文本转换为Markdown格式的文本。 |
|
""" |
|
text = text.replace('\n', '\n\n') |
|
text = text.replace('\n\n\n', '\n\n') |
|
text = text.replace('\n\n\n', '\n\n') |
|
return text |
|
|
|
|
|
|
|
|
|
def report_exception(chatbot, history, a, b): |
|
""" |
|
向chatbot中添加错误信息 |
|
""" |
|
chatbot.append((a, b)) |
|
history.extend([a, b]) |
|
|
|
|
|
def text_divide_paragraph(text): |
|
""" |
|
将文本按照段落分隔符分割开,生成带有段落标签的HTML代码。 |
|
""" |
|
pre = '<div class="markdown-body">' |
|
suf = '</div>' |
|
if text.startswith(pre) and text.endswith(suf): |
|
return text |
|
|
|
if '```' in text: |
|
|
|
return text |
|
elif '</div>' in text: |
|
|
|
return text |
|
else: |
|
|
|
lines = text.split("\n") |
|
for i, line in enumerate(lines): |
|
lines[i] = lines[i].replace(" ", " ") |
|
text = "</br>".join(lines) |
|
return pre + text + suf |
|
|
|
|
|
@lru_cache(maxsize=128) |
|
def markdown_convertion(txt): |
|
""" |
|
将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。 |
|
""" |
|
pre = '<div class="markdown-body">' |
|
suf = '</div>' |
|
if txt.startswith(pre) and txt.endswith(suf): |
|
|
|
return txt |
|
|
|
markdown_extension_configs = { |
|
'mdx_math': { |
|
'enable_dollar_delimiter': True, |
|
'use_gitlab_delimiters': False, |
|
}, |
|
} |
|
find_equation_pattern = r'<script type="math/tex(?:.*?)>(.*?)</script>' |
|
|
|
def tex2mathml_catch_exception(content, *args, **kwargs): |
|
try: |
|
content = tex2mathml(content, *args, **kwargs) |
|
except: |
|
content = content |
|
return content |
|
|
|
def replace_math_no_render(match): |
|
content = match.group(1) |
|
if 'mode=display' in match.group(0): |
|
content = content.replace('\n', '</br>') |
|
return f"<font color=\"#00FF00\">$$</font><font color=\"#FF00FF\">{content}</font><font color=\"#00FF00\">$$</font>" |
|
else: |
|
return f"<font color=\"#00FF00\">$</font><font color=\"#FF00FF\">{content}</font><font color=\"#00FF00\">$</font>" |
|
|
|
def replace_math_render(match): |
|
content = match.group(1) |
|
if 'mode=display' in match.group(0): |
|
if '\\begin{aligned}' in content: |
|
content = content.replace('\\begin{aligned}', '\\begin{array}') |
|
content = content.replace('\\end{aligned}', '\\end{array}') |
|
content = content.replace('&', ' ') |
|
content = tex2mathml_catch_exception(content, display="block") |
|
return content |
|
else: |
|
return tex2mathml_catch_exception(content) |
|
|
|
def markdown_bug_hunt(content): |
|
""" |
|
解决一个mdx_math的bug(单$包裹begin命令时多余<script>) |
|
""" |
|
content = content.replace('<script type="math/tex">\n<script type="math/tex; mode=display">', '<script type="math/tex; mode=display">') |
|
content = content.replace('</script>\n</script>', '</script>') |
|
return content |
|
|
|
def is_equation(txt): |
|
""" |
|
判定是否为公式 | 测试1 写出洛伦兹定律,使用tex格式公式 测试2 给出柯西不等式,使用latex格式 测试3 写出麦克斯韦方程组 |
|
""" |
|
if '```' in txt and '```reference' not in txt: return False |
|
if '$' not in txt and '\\[' not in txt: return False |
|
mathpatterns = { |
|
r'(?<!\\|\$)(\$)([^\$]+)(\$)': {'allow_multi_lines': False}, |
|
r'(?<!\\)(\$\$)([^\$]+)(\$\$)': {'allow_multi_lines': True}, |
|
r'(?<!\\)(\\\[)(.+?)(\\\])': {'allow_multi_lines': False}, |
|
|
|
|
|
|
|
} |
|
matches = [] |
|
for pattern, property in mathpatterns.items(): |
|
flags = re.ASCII|re.DOTALL if property['allow_multi_lines'] else re.ASCII |
|
matches.extend(re.findall(pattern, txt, flags)) |
|
if len(matches) == 0: return False |
|
contain_any_eq = False |
|
illegal_pattern = re.compile(r'[^\x00-\x7F]|echo') |
|
for match in matches: |
|
if len(match) != 3: return False |
|
eq_canidate = match[1] |
|
if illegal_pattern.search(eq_canidate): |
|
return False |
|
else: |
|
contain_any_eq = True |
|
return contain_any_eq |
|
|
|
def fix_markdown_indent(txt): |
|
|
|
if (' - ' not in txt) or ('. ' not in txt): |
|
return txt |
|
|
|
lines = txt.split("\n") |
|
pattern = re.compile(r'^\s+-') |
|
activated = False |
|
for i, line in enumerate(lines): |
|
if line.startswith('- ') or line.startswith('1. '): |
|
activated = True |
|
if activated and pattern.match(line): |
|
stripped_string = line.lstrip() |
|
num_spaces = len(line) - len(stripped_string) |
|
if (num_spaces % 4) == 3: |
|
num_spaces_should_be = math.ceil(num_spaces/4) * 4 |
|
lines[i] = ' ' * num_spaces_should_be + stripped_string |
|
return '\n'.join(lines) |
|
|
|
txt = fix_markdown_indent(txt) |
|
if is_equation(txt): |
|
|
|
split = markdown.markdown(text='---') |
|
convert_stage_1 = markdown.markdown(text=txt, extensions=['sane_lists', 'tables', 'mdx_math', 'fenced_code'], extension_configs=markdown_extension_configs) |
|
convert_stage_1 = markdown_bug_hunt(convert_stage_1) |
|
|
|
convert_stage_2_1, n = re.subn(find_equation_pattern, replace_math_no_render, convert_stage_1, flags=re.DOTALL) |
|
|
|
convert_stage_2_2, n = re.subn(find_equation_pattern, replace_math_render, convert_stage_1, flags=re.DOTALL) |
|
|
|
return pre + convert_stage_2_1 + f'{split}' + convert_stage_2_2 + suf |
|
else: |
|
return pre + markdown.markdown(txt, extensions=['sane_lists', 'tables', 'fenced_code', 'codehilite']) + suf |
|
|
|
|
|
def close_up_code_segment_during_stream(gpt_reply): |
|
""" |
|
在gpt输出代码的中途(输出了前面的```,但还没输出完后面的```),补上后面的``` |
|
|
|
Args: |
|
gpt_reply (str): GPT模型返回的回复字符串。 |
|
|
|
Returns: |
|
str: 返回一个新的字符串,将输出代码片段的“后面的```”补上。 |
|
|
|
""" |
|
if '```' not in gpt_reply: |
|
return gpt_reply |
|
if gpt_reply.endswith('```'): |
|
return gpt_reply |
|
|
|
|
|
segments = gpt_reply.split('```') |
|
n_mark = len(segments) - 1 |
|
if n_mark % 2 == 1: |
|
|
|
return gpt_reply+'\n```' |
|
else: |
|
return gpt_reply |
|
|
|
|
|
def format_io(self, y): |
|
""" |
|
将输入和输出解析为HTML格式。将y中最后一项的输入部分段落化,并将输出部分的Markdown和数学公式转换为HTML格式。 |
|
""" |
|
if y is None or y == []: |
|
return [] |
|
i_ask, gpt_reply = y[-1] |
|
|
|
if i_ask is not None: i_ask = text_divide_paragraph(i_ask) |
|
|
|
if gpt_reply is not None: gpt_reply = close_up_code_segment_during_stream(gpt_reply) |
|
|
|
y[-1] = ( |
|
None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code', 'tables']), |
|
None if gpt_reply is None else markdown_convertion(gpt_reply) |
|
) |
|
return y |
|
|
|
|
|
def find_free_port(): |
|
""" |
|
返回当前系统中可用的未使用端口。 |
|
""" |
|
import socket |
|
from contextlib import closing |
|
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: |
|
s.bind(('', 0)) |
|
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) |
|
return s.getsockname()[1] |
|
|
|
|
|
def extract_archive(file_path, dest_dir): |
|
import zipfile |
|
import tarfile |
|
import os |
|
|
|
file_extension = os.path.splitext(file_path)[1] |
|
|
|
|
|
if file_extension == '.zip': |
|
with zipfile.ZipFile(file_path, 'r') as zipobj: |
|
zipobj.extractall(path=dest_dir) |
|
print("Successfully extracted zip archive to {}".format(dest_dir)) |
|
|
|
elif file_extension in ['.tar', '.gz', '.bz2']: |
|
with tarfile.open(file_path, 'r:*') as tarobj: |
|
tarobj.extractall(path=dest_dir) |
|
print("Successfully extracted tar archive to {}".format(dest_dir)) |
|
|
|
|
|
|
|
elif file_extension == '.rar': |
|
try: |
|
import rarfile |
|
with rarfile.RarFile(file_path) as rf: |
|
rf.extractall(path=dest_dir) |
|
print("Successfully extracted rar archive to {}".format(dest_dir)) |
|
except: |
|
print("Rar format requires additional dependencies to install") |
|
return '\n\n解压失败! 需要安装pip install rarfile来解压rar文件。建议:使用zip压缩格式。' |
|
|
|
|
|
elif file_extension == '.7z': |
|
try: |
|
import py7zr |
|
with py7zr.SevenZipFile(file_path, mode='r') as f: |
|
f.extractall(path=dest_dir) |
|
print("Successfully extracted 7z archive to {}".format(dest_dir)) |
|
except: |
|
print("7z format requires additional dependencies to install") |
|
return '\n\n解压失败! 需要安装pip install py7zr来解压7z文件' |
|
else: |
|
return '' |
|
return '' |
|
|
|
|
|
def find_recent_files(directory): |
|
""" |
|
me: find files that is created with in one minutes under a directory with python, write a function |
|
gpt: here it is! |
|
""" |
|
import os |
|
import time |
|
current_time = time.time() |
|
one_minute_ago = current_time - 60 |
|
recent_files = [] |
|
if not os.path.exists(directory): |
|
os.makedirs(directory, exist_ok=True) |
|
for filename in os.listdir(directory): |
|
file_path = pj(directory, filename) |
|
if file_path.endswith('.log'): |
|
continue |
|
created_time = os.path.getmtime(file_path) |
|
if created_time >= one_minute_ago: |
|
if os.path.isdir(file_path): |
|
continue |
|
recent_files.append(file_path) |
|
|
|
return recent_files |
|
|
|
|
|
def file_already_in_downloadzone(file, user_path): |
|
try: |
|
parent_path = os.path.abspath(user_path) |
|
child_path = os.path.abspath(file) |
|
if os.path.samefile(os.path.commonpath([parent_path, child_path]), parent_path): |
|
return True |
|
else: |
|
return False |
|
except: |
|
return False |
|
|
|
def promote_file_to_downloadzone(file, rename_file=None, chatbot=None): |
|
|
|
import shutil |
|
if chatbot is not None: |
|
user_name = get_user(chatbot) |
|
else: |
|
user_name = default_user_name |
|
if not os.path.exists(file): |
|
raise FileNotFoundError(f'文件{file}不存在') |
|
user_path = get_log_folder(user_name, plugin_name=None) |
|
if file_already_in_downloadzone(file, user_path): |
|
new_path = file |
|
else: |
|
user_path = get_log_folder(user_name, plugin_name='downloadzone') |
|
if rename_file is None: rename_file = f'{gen_time_str()}-{os.path.basename(file)}' |
|
new_path = pj(user_path, rename_file) |
|
|
|
if os.path.exists(new_path) and not os.path.samefile(new_path, file): os.remove(new_path) |
|
|
|
if not os.path.exists(new_path): shutil.copyfile(file, new_path) |
|
|
|
if chatbot is not None: |
|
if 'files_to_promote' in chatbot._cookies: current = chatbot._cookies['files_to_promote'] |
|
else: current = [] |
|
if new_path not in current: |
|
chatbot._cookies.update({'files_to_promote': [new_path] + current}) |
|
return new_path |
|
|
|
|
|
def disable_auto_promotion(chatbot): |
|
chatbot._cookies.update({'files_to_promote': []}) |
|
return |
|
|
|
|
|
def del_outdated_uploads(outdate_time_seconds, target_path_base=None): |
|
if target_path_base is None: |
|
user_upload_dir = get_conf('PATH_PRIVATE_UPLOAD') |
|
else: |
|
user_upload_dir = target_path_base |
|
current_time = time.time() |
|
one_hour_ago = current_time - outdate_time_seconds |
|
|
|
|
|
for subdirectory in glob.glob(f'{user_upload_dir}/*'): |
|
subdirectory_time = os.path.getmtime(subdirectory) |
|
if subdirectory_time < one_hour_ago: |
|
try: shutil.rmtree(subdirectory) |
|
except: pass |
|
return |
|
|
|
|
|
def html_local_file(file): |
|
base_path = os.path.dirname(__file__) |
|
if os.path.exists(str(file)): |
|
file = f'file={file.replace(base_path, ".")}' |
|
return file |
|
|
|
|
|
def html_local_img(__file, layout='left', max_width=None, max_height=None, md=True): |
|
style = '' |
|
if max_width is not None: |
|
style += f"max-width: {max_width};" |
|
if max_height is not None: |
|
style += f"max-height: {max_height};" |
|
__file = html_local_file(__file) |
|
a = f'<div align="{layout}"><img src="{__file}" style="{style}"></div>' |
|
if md: |
|
a = f'![{__file}]({__file})' |
|
return a |
|
|
|
def file_manifest_filter_type(file_list, filter_: list = None): |
|
new_list = [] |
|
if not filter_: filter_ = ['png', 'jpg', 'jpeg'] |
|
for file in file_list: |
|
if str(os.path.basename(file)).split('.')[-1] in filter_: |
|
new_list.append(html_local_img(file, md=False)) |
|
else: |
|
new_list.append(file) |
|
return new_list |
|
|
|
def to_markdown_tabs(head: list, tabs: list, alignment=':---:', column=False): |
|
""" |
|
Args: |
|
head: 表头:[] |
|
tabs: 表值:[[列1], [列2], [列3], [列4]] |
|
alignment: :--- 左对齐, :---: 居中对齐, ---: 右对齐 |
|
column: True to keep data in columns, False to keep data in rows (default). |
|
Returns: |
|
A string representation of the markdown table. |
|
""" |
|
if column: |
|
transposed_tabs = list(map(list, zip(*tabs))) |
|
else: |
|
transposed_tabs = tabs |
|
|
|
max_len = max(len(column) for column in transposed_tabs) |
|
|
|
tab_format = "| %s " |
|
tabs_list = "".join([tab_format % i for i in head]) + '|\n' |
|
tabs_list += "".join([tab_format % alignment for i in head]) + '|\n' |
|
|
|
for i in range(max_len): |
|
row_data = [tab[i] if i < len(tab) else '' for tab in transposed_tabs] |
|
row_data = file_manifest_filter_type(row_data, filter_=None) |
|
tabs_list += "".join([tab_format % i for i in row_data]) + '|\n' |
|
|
|
return tabs_list |
|
|
|
def on_file_uploaded(request: gradio.Request, files, chatbot, txt, txt2, checkboxes, cookies): |
|
""" |
|
当文件被上传时的回调函数 |
|
""" |
|
if len(files) == 0: |
|
return chatbot, txt |
|
|
|
|
|
user_name = default_user_name if not request.username else request.username |
|
time_tag = gen_time_str() |
|
target_path_base = get_upload_folder(user_name, tag=time_tag) |
|
os.makedirs(target_path_base, exist_ok=True) |
|
|
|
|
|
outdate_time_seconds = 3600 |
|
del_outdated_uploads(outdate_time_seconds, get_upload_folder(user_name)) |
|
|
|
|
|
upload_msg = '' |
|
for file in files: |
|
file_origin_name = os.path.basename(file.orig_name) |
|
this_file_path = pj(target_path_base, file_origin_name) |
|
shutil.move(file.name, this_file_path) |
|
upload_msg += extract_archive(file_path=this_file_path, dest_dir=this_file_path+'.extract') |
|
|
|
if "浮动输入区" in checkboxes: |
|
txt, txt2 = "", target_path_base |
|
else: |
|
txt, txt2 = target_path_base, "" |
|
|
|
|
|
moved_files = [fp for fp in glob.glob(f'{target_path_base}/**/*', recursive=True)] |
|
moved_files_str = to_markdown_tabs(head=['文件'], tabs=[moved_files]) |
|
chatbot.append(['我上传了文件,请查收', |
|
f'[Local Message] 收到以下文件: \n\n{moved_files_str}' + |
|
f'\n\n调用路径参数已自动修正到: \n\n{txt}' + |
|
f'\n\n现在您点击任意函数插件时,以上文件将被作为输入参数'+upload_msg]) |
|
|
|
|
|
cookies.update({ |
|
'most_recent_uploaded': { |
|
'path': target_path_base, |
|
'time': time.time(), |
|
'time_str': time_tag |
|
}}) |
|
return chatbot, txt, txt2, cookies |
|
|
|
|
|
def on_report_generated(cookies, files, chatbot): |
|
|
|
|
|
if 'files_to_promote' in cookies: |
|
report_files = cookies['files_to_promote'] |
|
cookies.pop('files_to_promote') |
|
else: |
|
report_files = [] |
|
|
|
if len(report_files) == 0: |
|
return cookies, None, chatbot |
|
|
|
file_links = '' |
|
for f in report_files: file_links += f'<br/><a href="file={os.path.abspath(f)}" target="_blank">{f}</a>' |
|
chatbot.append(['报告如何远程获取?', f'报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。{file_links}']) |
|
return cookies, report_files, chatbot |
|
|
|
def load_chat_cookies(): |
|
API_KEY, LLM_MODEL, AZURE_API_KEY = get_conf('API_KEY', 'LLM_MODEL', 'AZURE_API_KEY') |
|
AZURE_CFG_ARRAY, NUM_CUSTOM_BASIC_BTN = get_conf('AZURE_CFG_ARRAY', 'NUM_CUSTOM_BASIC_BTN') |
|
|
|
|
|
if is_any_api_key(AZURE_API_KEY): |
|
if is_any_api_key(API_KEY): API_KEY = API_KEY + ',' + AZURE_API_KEY |
|
else: API_KEY = AZURE_API_KEY |
|
if len(AZURE_CFG_ARRAY) > 0: |
|
for azure_model_name, azure_cfg_dict in AZURE_CFG_ARRAY.items(): |
|
if not azure_model_name.startswith('azure'): |
|
raise ValueError("AZURE_CFG_ARRAY中配置的模型必须以azure开头") |
|
AZURE_API_KEY_ = azure_cfg_dict["AZURE_API_KEY"] |
|
if is_any_api_key(AZURE_API_KEY_): |
|
if is_any_api_key(API_KEY): API_KEY = API_KEY + ',' + AZURE_API_KEY_ |
|
else: API_KEY = AZURE_API_KEY_ |
|
|
|
customize_fn_overwrite_ = {} |
|
for k in range(NUM_CUSTOM_BASIC_BTN): |
|
customize_fn_overwrite_.update({ |
|
"自定义按钮" + str(k+1):{ |
|
"Title": r"", |
|
"Prefix": r"请在自定义菜单中定义提示词前缀.", |
|
"Suffix": r"请在自定义菜单中定义提示词后缀", |
|
} |
|
}) |
|
return {'api_key': API_KEY, 'llm_model': LLM_MODEL, 'customize_fn_overwrite': customize_fn_overwrite_} |
|
|
|
def is_openai_api_key(key): |
|
CUSTOM_API_KEY_PATTERN = get_conf('CUSTOM_API_KEY_PATTERN') |
|
if len(CUSTOM_API_KEY_PATTERN) != 0: |
|
API_MATCH_ORIGINAL = re.match(CUSTOM_API_KEY_PATTERN, key) |
|
else: |
|
API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key) |
|
return bool(API_MATCH_ORIGINAL) |
|
|
|
def is_azure_api_key(key): |
|
API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key) |
|
return bool(API_MATCH_AZURE) |
|
|
|
def is_api2d_key(key): |
|
API_MATCH_API2D = re.match(r"fk[a-zA-Z0-9]{6}-[a-zA-Z0-9]{32}$", key) |
|
return bool(API_MATCH_API2D) |
|
|
|
def is_any_api_key(key): |
|
if ',' in key: |
|
keys = key.split(',') |
|
for k in keys: |
|
if is_any_api_key(k): return True |
|
return False |
|
else: |
|
return is_openai_api_key(key) or is_api2d_key(key) or is_azure_api_key(key) |
|
|
|
def what_keys(keys): |
|
avail_key_list = {'OpenAI Key':0, "Azure Key":0, "API2D Key":0} |
|
key_list = keys.split(',') |
|
|
|
for k in key_list: |
|
if is_openai_api_key(k): |
|
avail_key_list['OpenAI Key'] += 1 |
|
|
|
for k in key_list: |
|
if is_api2d_key(k): |
|
avail_key_list['API2D Key'] += 1 |
|
|
|
for k in key_list: |
|
if is_azure_api_key(k): |
|
avail_key_list['Azure Key'] += 1 |
|
|
|
return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个, Azure Key {avail_key_list['Azure Key']} 个, API2D Key {avail_key_list['API2D Key']} 个" |
|
|
|
def select_api_key(keys, llm_model): |
|
import random |
|
avail_key_list = [] |
|
key_list = keys.split(',') |
|
|
|
if llm_model.startswith('gpt-'): |
|
for k in key_list: |
|
if is_openai_api_key(k): avail_key_list.append(k) |
|
|
|
if llm_model.startswith('api2d-'): |
|
for k in key_list: |
|
if is_api2d_key(k): avail_key_list.append(k) |
|
|
|
if llm_model.startswith('azure-'): |
|
for k in key_list: |
|
if is_azure_api_key(k): avail_key_list.append(k) |
|
|
|
if len(avail_key_list) == 0: |
|
raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源(右下角更换模型菜单中可切换openai,azure,claude,api2d等请求源)。") |
|
|
|
api_key = random.choice(avail_key_list) |
|
return api_key |
|
|
|
def read_env_variable(arg, default_value): |
|
""" |
|
环境变量可以是 `GPT_ACADEMIC_CONFIG`(优先),也可以直接是`CONFIG` |
|
例如在windows cmd中,既可以写: |
|
set USE_PROXY=True |
|
set API_KEY=sk-j7caBpkRoxxxxxxxxxxxxxxxxxxxxxxxxxxxx |
|
set proxies={"http":"http://127.0.0.1:10085", "https":"http://127.0.0.1:10085",} |
|
set AVAIL_LLM_MODELS=["gpt-3.5-turbo", "chatglm"] |
|
set AUTHENTICATION=[("username", "password"), ("username2", "password2")] |
|
也可以写: |
|
set GPT_ACADEMIC_USE_PROXY=True |
|
set GPT_ACADEMIC_API_KEY=sk-j7caBpkRoxxxxxxxxxxxxxxxxxxxxxxxxxxxx |
|
set GPT_ACADEMIC_proxies={"http":"http://127.0.0.1:10085", "https":"http://127.0.0.1:10085",} |
|
set GPT_ACADEMIC_AVAIL_LLM_MODELS=["gpt-3.5-turbo", "chatglm"] |
|
set GPT_ACADEMIC_AUTHENTICATION=[("username", "password"), ("username2", "password2")] |
|
""" |
|
from colorful import print亮红, print亮绿 |
|
arg_with_prefix = "GPT_ACADEMIC_" + arg |
|
if arg_with_prefix in os.environ: |
|
env_arg = os.environ[arg_with_prefix] |
|
elif arg in os.environ: |
|
env_arg = os.environ[arg] |
|
else: |
|
raise KeyError |
|
print(f"[ENV_VAR] 尝试加载{arg},默认值:{default_value} --> 修正值:{env_arg}") |
|
try: |
|
if isinstance(default_value, bool): |
|
env_arg = env_arg.strip() |
|
if env_arg == 'True': r = True |
|
elif env_arg == 'False': r = False |
|
else: print('enter True or False, but have:', env_arg); r = default_value |
|
elif isinstance(default_value, int): |
|
r = int(env_arg) |
|
elif isinstance(default_value, float): |
|
r = float(env_arg) |
|
elif isinstance(default_value, str): |
|
r = env_arg.strip() |
|
elif isinstance(default_value, dict): |
|
r = eval(env_arg) |
|
elif isinstance(default_value, list): |
|
r = eval(env_arg) |
|
elif default_value is None: |
|
assert arg == "proxies" |
|
r = eval(env_arg) |
|
else: |
|
print亮红(f"[ENV_VAR] 环境变量{arg}不支持通过环境变量设置! ") |
|
raise KeyError |
|
except: |
|
print亮红(f"[ENV_VAR] 环境变量{arg}加载失败! ") |
|
raise KeyError(f"[ENV_VAR] 环境变量{arg}加载失败! ") |
|
|
|
print亮绿(f"[ENV_VAR] 成功读取环境变量{arg}") |
|
return r |
|
|
|
@lru_cache(maxsize=128) |
|
def read_single_conf_with_lru_cache(arg): |
|
from colorful import print亮红, print亮绿, print亮蓝 |
|
try: |
|
|
|
default_ref = getattr(importlib.import_module('config'), arg) |
|
r = read_env_variable(arg, default_ref) |
|
except: |
|
try: |
|
|
|
r = getattr(importlib.import_module('config_private'), arg) |
|
except: |
|
|
|
r = getattr(importlib.import_module('config'), arg) |
|
|
|
|
|
if arg == 'API_URL_REDIRECT': |
|
oai_rd = r.get("https://api.openai.com/v1/chat/completions", None) |
|
if oai_rd and not oai_rd.endswith('/completions'): |
|
print亮红( "\n\n[API_URL_REDIRECT] API_URL_REDIRECT填错了。请阅读`https://github.com/binary-husky/gpt_academic/wiki/项目配置说明`。如果您确信自己没填错,无视此消息即可。") |
|
time.sleep(5) |
|
if arg == 'API_KEY': |
|
print亮蓝(f"[API_KEY] 本项目现已支持OpenAI和Azure的api-key。也支持同时填写多个api-key,如API_KEY=\"openai-key1,openai-key2,azure-key3\"") |
|
print亮蓝(f"[API_KEY] 您既可以在config.py中修改api-key(s),也可以在问题输入区输入临时的api-key(s),然后回车键提交后即可生效。") |
|
if is_any_api_key(r): |
|
print亮绿(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功") |
|
else: |
|
print亮红( "[API_KEY] 您的 API_KEY 不满足任何一种已知的密钥格式,请在config文件中修改API密钥之后再运行。") |
|
if arg == 'proxies': |
|
if not read_single_conf_with_lru_cache('USE_PROXY'): r = None |
|
if r is None: |
|
print亮红('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议:检查USE_PROXY选项是否修改。') |
|
else: |
|
print亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', r) |
|
assert isinstance(r, dict), 'proxies格式错误,请注意proxies选项的格式,不要遗漏括号。' |
|
return r |
|
|
|
|
|
@lru_cache(maxsize=128) |
|
def get_conf(*args): |
|
""" |
|
本项目的所有配置都集中在config.py中。 修改配置有三种方法,您只需要选择其中一种即可: |
|
- 直接修改config.py |
|
- 创建并修改config_private.py |
|
- 修改环境变量(修改docker-compose.yml等价于修改容器内部的环境变量) |
|
|
|
注意:如果您使用docker-compose部署,请修改docker-compose(等价于修改容器内部的环境变量) |
|
""" |
|
res = [] |
|
for arg in args: |
|
r = read_single_conf_with_lru_cache(arg) |
|
res.append(r) |
|
if len(res) == 1: return res[0] |
|
return res |
|
|
|
|
|
def clear_line_break(txt): |
|
txt = txt.replace('\n', ' ') |
|
txt = txt.replace(' ', ' ') |
|
txt = txt.replace(' ', ' ') |
|
return txt |
|
|
|
|
|
class DummyWith(): |
|
""" |
|
这段代码定义了一个名为DummyWith的空上下文管理器, |
|
它的作用是……额……就是不起作用,即在代码结构不变得情况下取代其他的上下文管理器。 |
|
上下文管理器是一种Python对象,用于与with语句一起使用, |
|
以确保一些资源在代码块执行期间得到正确的初始化和清理。 |
|
上下文管理器必须实现两个方法,分别为 __enter__()和 __exit__()。 |
|
在上下文执行开始的情况下,__enter__()方法会在代码块被执行前被调用, |
|
而在上下文执行结束时,__exit__()方法则会被调用。 |
|
""" |
|
def __enter__(self): |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
return |
|
|
|
def run_gradio_in_subpath(demo, auth, port, custom_path): |
|
""" |
|
把gradio的运行地址更改到指定的二次路径上 |
|
""" |
|
def is_path_legal(path: str)->bool: |
|
''' |
|
check path for sub url |
|
path: path to check |
|
return value: do sub url wrap |
|
''' |
|
if path == "/": return True |
|
if len(path) == 0: |
|
print("ilegal custom path: {}\npath must not be empty\ndeploy on root url".format(path)) |
|
return False |
|
if path[0] == '/': |
|
if path[1] != '/': |
|
print("deploy on sub-path {}".format(path)) |
|
return True |
|
return False |
|
print("ilegal custom path: {}\npath should begin with \'/\'\ndeploy on root url".format(path)) |
|
return False |
|
|
|
if not is_path_legal(custom_path): raise RuntimeError('Ilegal custom path') |
|
import uvicorn |
|
import gradio as gr |
|
from fastapi import FastAPI |
|
app = FastAPI() |
|
if custom_path != "/": |
|
@app.get("/") |
|
def read_main(): |
|
return {"message": f"Gradio is running at: {custom_path}"} |
|
app = gr.mount_gradio_app(app, demo, path=custom_path) |
|
uvicorn.run(app, host="0.0.0.0", port=port) |
|
|
|
|
|
def clip_history(inputs, history, tokenizer, max_token_limit): |
|
""" |
|
reduce the length of history by clipping. |
|
this function search for the longest entries to clip, little by little, |
|
until the number of token of history is reduced under threshold. |
|
通过裁剪来缩短历史记录的长度。 |
|
此函数逐渐地搜索最长的条目进行剪辑, |
|
直到历史记录的标记数量降低到阈值以下。 |
|
""" |
|
import numpy as np |
|
from request_llms.bridge_all import model_info |
|
def get_token_num(txt): |
|
return len(tokenizer.encode(txt, disallowed_special=())) |
|
input_token_num = get_token_num(inputs) |
|
|
|
if max_token_limit < 5000: output_token_expect = 256 |
|
elif max_token_limit < 9000: output_token_expect = 512 |
|
else: output_token_expect = 1024 |
|
|
|
if input_token_num < max_token_limit * 3 / 4: |
|
|
|
|
|
max_token_limit = max_token_limit - input_token_num |
|
|
|
max_token_limit = max_token_limit - output_token_expect |
|
|
|
if max_token_limit < output_token_expect: |
|
history = [] |
|
return history |
|
else: |
|
|
|
history = [] |
|
return history |
|
|
|
everything = [''] |
|
everything.extend(history) |
|
n_token = get_token_num('\n'.join(everything)) |
|
everything_token = [get_token_num(e) for e in everything] |
|
|
|
|
|
delta = max(everything_token) // 16 |
|
|
|
while n_token > max_token_limit: |
|
where = np.argmax(everything_token) |
|
encoded = tokenizer.encode(everything[where], disallowed_special=()) |
|
clipped_encoded = encoded[:len(encoded)-delta] |
|
everything[where] = tokenizer.decode(clipped_encoded)[:-1] |
|
everything_token[where] = get_token_num(everything[where]) |
|
n_token = get_token_num('\n'.join(everything)) |
|
|
|
history = everything[1:] |
|
return history |
|
|
|
""" |
|
======================================================================== |
|
第三部分 |
|
其他小工具: |
|
- zip_folder: 把某个路径下所有文件压缩,然后转移到指定的另一个路径中(gpt写的) |
|
- gen_time_str: 生成时间戳 |
|
- ProxyNetworkActivate: 临时地启动代理网络(如果有) |
|
- objdump/objload: 快捷的调试函数 |
|
======================================================================== |
|
""" |
|
|
|
def zip_folder(source_folder, dest_folder, zip_name): |
|
import zipfile |
|
import os |
|
|
|
if not os.path.exists(source_folder): |
|
print(f"{source_folder} does not exist") |
|
return |
|
|
|
|
|
if not os.path.exists(dest_folder): |
|
print(f"{dest_folder} does not exist") |
|
return |
|
|
|
|
|
zip_file = pj(dest_folder, zip_name) |
|
|
|
|
|
with zipfile.ZipFile(zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
|
|
for foldername, subfolders, filenames in os.walk(source_folder): |
|
for filename in filenames: |
|
filepath = pj(foldername, filename) |
|
zipf.write(filepath, arcname=os.path.relpath(filepath, source_folder)) |
|
|
|
|
|
if os.path.dirname(zip_file) != dest_folder: |
|
os.rename(zip_file, pj(dest_folder, os.path.basename(zip_file))) |
|
zip_file = pj(dest_folder, os.path.basename(zip_file)) |
|
|
|
print(f"Zip file created at {zip_file}") |
|
|
|
def zip_result(folder): |
|
t = gen_time_str() |
|
zip_folder(folder, get_log_folder(), f'{t}-result.zip') |
|
return pj(get_log_folder(), f'{t}-result.zip') |
|
|
|
def gen_time_str(): |
|
import time |
|
return time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) |
|
|
|
def get_log_folder(user=default_user_name, plugin_name='shared'): |
|
if user is None: user = default_user_name |
|
PATH_LOGGING = get_conf('PATH_LOGGING') |
|
if plugin_name is None: |
|
_dir = pj(PATH_LOGGING, user) |
|
else: |
|
_dir = pj(PATH_LOGGING, user, plugin_name) |
|
if not os.path.exists(_dir): os.makedirs(_dir) |
|
return _dir |
|
|
|
def get_upload_folder(user=default_user_name, tag=None): |
|
PATH_PRIVATE_UPLOAD = get_conf('PATH_PRIVATE_UPLOAD') |
|
if user is None: user = default_user_name |
|
if tag is None or len(tag)==0: |
|
target_path_base = pj(PATH_PRIVATE_UPLOAD, user) |
|
else: |
|
target_path_base = pj(PATH_PRIVATE_UPLOAD, user, tag) |
|
return target_path_base |
|
|
|
def is_the_upload_folder(string): |
|
PATH_PRIVATE_UPLOAD = get_conf('PATH_PRIVATE_UPLOAD') |
|
pattern = r'^PATH_PRIVATE_UPLOAD[\\/][A-Za-z0-9_-]+[\\/]\d{4}-\d{2}-\d{2}-\d{2}-\d{2}-\d{2}$' |
|
pattern = pattern.replace('PATH_PRIVATE_UPLOAD', PATH_PRIVATE_UPLOAD) |
|
if re.match(pattern, string): return True |
|
else: return False |
|
|
|
def get_user(chatbotwithcookies): |
|
return chatbotwithcookies._cookies.get('user_name', default_user_name) |
|
|
|
class ProxyNetworkActivate(): |
|
""" |
|
这段代码定义了一个名为ProxyNetworkActivate的空上下文管理器, 用于给一小段代码上代理 |
|
""" |
|
def __init__(self, task=None) -> None: |
|
self.task = task |
|
if not task: |
|
|
|
self.valid = True |
|
else: |
|
|
|
from toolbox import get_conf |
|
WHEN_TO_USE_PROXY = get_conf('WHEN_TO_USE_PROXY') |
|
self.valid = (task in WHEN_TO_USE_PROXY) |
|
|
|
def __enter__(self): |
|
if not self.valid: return self |
|
from toolbox import get_conf |
|
proxies = get_conf('proxies') |
|
if 'no_proxy' in os.environ: os.environ.pop('no_proxy') |
|
if proxies is not None: |
|
if 'http' in proxies: os.environ['HTTP_PROXY'] = proxies['http'] |
|
if 'https' in proxies: os.environ['HTTPS_PROXY'] = proxies['https'] |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
os.environ['no_proxy'] = '*' |
|
if 'HTTP_PROXY' in os.environ: os.environ.pop('HTTP_PROXY') |
|
if 'HTTPS_PROXY' in os.environ: os.environ.pop('HTTPS_PROXY') |
|
return |
|
|
|
def objdump(obj, file='objdump.tmp'): |
|
import pickle |
|
with open(file, 'wb+') as f: |
|
pickle.dump(obj, f) |
|
return |
|
|
|
def objload(file='objdump.tmp'): |
|
import pickle, os |
|
if not os.path.exists(file): |
|
return |
|
with open(file, 'rb') as f: |
|
return pickle.load(f) |
|
|
|
def Singleton(cls): |
|
""" |
|
一个单实例装饰器 |
|
""" |
|
_instance = {} |
|
|
|
def _singleton(*args, **kargs): |
|
if cls not in _instance: |
|
_instance[cls] = cls(*args, **kargs) |
|
return _instance[cls] |
|
|
|
return _singleton |
|
|
|
""" |
|
======================================================================== |
|
第四部分 |
|
接驳void-terminal: |
|
- set_conf: 在运行过程中动态地修改配置 |
|
- set_multi_conf: 在运行过程中动态地修改多个配置 |
|
- get_plugin_handle: 获取插件的句柄 |
|
- get_plugin_default_kwargs: 获取插件的默认参数 |
|
- get_chat_handle: 获取简单聊天的句柄 |
|
- get_chat_default_kwargs: 获取简单聊天的默认参数 |
|
======================================================================== |
|
""" |
|
|
|
def set_conf(key, value): |
|
from toolbox import read_single_conf_with_lru_cache, get_conf |
|
read_single_conf_with_lru_cache.cache_clear() |
|
get_conf.cache_clear() |
|
os.environ[key] = str(value) |
|
altered = get_conf(key) |
|
return altered |
|
|
|
def set_multi_conf(dic): |
|
for k, v in dic.items(): set_conf(k, v) |
|
return |
|
|
|
def get_plugin_handle(plugin_name): |
|
""" |
|
e.g. plugin_name = 'crazy_functions.批量Markdown翻译->Markdown翻译指定语言' |
|
""" |
|
import importlib |
|
assert '->' in plugin_name, \ |
|
"Example of plugin_name: crazy_functions.批量Markdown翻译->Markdown翻译指定语言" |
|
module, fn_name = plugin_name.split('->') |
|
f_hot_reload = getattr(importlib.import_module(module, fn_name), fn_name) |
|
return f_hot_reload |
|
|
|
def get_chat_handle(): |
|
""" |
|
""" |
|
from request_llms.bridge_all import predict_no_ui_long_connection |
|
return predict_no_ui_long_connection |
|
|
|
def get_plugin_default_kwargs(): |
|
""" |
|
""" |
|
from toolbox import ChatBotWithCookies |
|
cookies = load_chat_cookies() |
|
llm_kwargs = { |
|
'api_key': cookies['api_key'], |
|
'llm_model': cookies['llm_model'], |
|
'top_p':1.0, |
|
'max_length': None, |
|
'temperature':1.0, |
|
} |
|
chatbot = ChatBotWithCookies(llm_kwargs) |
|
|
|
|
|
DEFAULT_FN_GROUPS_kwargs = { |
|
"main_input": "./README.md", |
|
"llm_kwargs": llm_kwargs, |
|
"plugin_kwargs": {}, |
|
"chatbot_with_cookie": chatbot, |
|
"history": [], |
|
"system_prompt": "You are a good AI.", |
|
"web_port": None |
|
} |
|
return DEFAULT_FN_GROUPS_kwargs |
|
|
|
def get_chat_default_kwargs(): |
|
""" |
|
""" |
|
cookies = load_chat_cookies() |
|
llm_kwargs = { |
|
'api_key': cookies['api_key'], |
|
'llm_model': cookies['llm_model'], |
|
'top_p':1.0, |
|
'max_length': None, |
|
'temperature':1.0, |
|
} |
|
default_chat_kwargs = { |
|
"inputs": "Hello there, are you ready?", |
|
"llm_kwargs": llm_kwargs, |
|
"history": [], |
|
"sys_prompt": "You are AI assistant", |
|
"observe_window": None, |
|
"console_slience": False, |
|
} |
|
|
|
return default_chat_kwargs |
|
|
|
|
|
def get_pictures_list(path): |
|
file_manifest = [f for f in glob.glob(f'{path}/**/*.jpg', recursive=True)] |
|
file_manifest += [f for f in glob.glob(f'{path}/**/*.jpeg', recursive=True)] |
|
file_manifest += [f for f in glob.glob(f'{path}/**/*.png', recursive=True)] |
|
return file_manifest |
|
|
|
|
|
def have_any_recent_upload_image_files(chatbot): |
|
_5min = 5 * 60 |
|
if chatbot is None: return False, None |
|
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None) |
|
if not most_recent_uploaded: return False, None |
|
if time.time() - most_recent_uploaded["time"] < _5min: |
|
most_recent_uploaded = chatbot._cookies.get("most_recent_uploaded", None) |
|
path = most_recent_uploaded['path'] |
|
file_manifest = get_pictures_list(path) |
|
if len(file_manifest) == 0: return False, None |
|
return True, file_manifest |
|
else: |
|
return False, None |
|
|
|
|
|
|
|
def encode_image(image_path): |
|
with open(image_path, "rb") as image_file: |
|
return base64.b64encode(image_file.read()).decode('utf-8') |
|
|
|
|
|
def get_max_token(llm_kwargs): |
|
from request_llms.bridge_all import model_info |
|
return model_info[llm_kwargs['llm_model']]['max_token'] |
|
|
|
def check_packages(packages=[]): |
|
import importlib.util |
|
for p in packages: |
|
spam_spec = importlib.util.find_spec(p) |
|
if spam_spec is None: raise ModuleNotFoundError |