|
from toolbox import CatchException, update_ui, promote_file_to_downloadzone |
|
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency |
|
import datetime, json |
|
|
|
def fetch_items(list_of_items, batch_size): |
|
for i in range(0, len(list_of_items), batch_size): |
|
yield list_of_items[i:i + batch_size] |
|
|
|
def string_to_options(arguments): |
|
import argparse |
|
import shlex |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo") |
|
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='') |
|
parser.add_argument("--system_prompt", type=str, help="System prompt", default='') |
|
parser.add_argument("--batch", type=int, help="System prompt", default=50) |
|
parser.add_argument("--pre_seq_len", type=int, help="pre_seq_len", default=50) |
|
parser.add_argument("--learning_rate", type=float, help="learning_rate", default=2e-2) |
|
parser.add_argument("--num_gpus", type=int, help="num_gpus", default=1) |
|
parser.add_argument("--json_dataset", type=str, help="json_dataset", default="") |
|
parser.add_argument("--ptuning_directory", type=str, help="ptuning_directory", default="") |
|
|
|
|
|
|
|
|
|
args = parser.parse_args(shlex.split(arguments)) |
|
|
|
return args |
|
|
|
@CatchException |
|
def 微调数据集生成(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): |
|
""" |
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径 |
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行 |
|
plugin_kwargs 插件模型的参数 |
|
chatbot 聊天显示框的句柄,用于显示给用户 |
|
history 聊天历史,前情提要 |
|
system_prompt 给gpt的静默提醒 |
|
user_request 当前用户的请求信息(IP地址等) |
|
""" |
|
history = [] |
|
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成")) |
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") |
|
args = plugin_kwargs.get("advanced_arg", None) |
|
if args is None: |
|
chatbot.append(("没给定指令", "退出")) |
|
yield from update_ui(chatbot=chatbot, history=history); return |
|
else: |
|
arguments = string_to_options(arguments=args) |
|
|
|
dat = [] |
|
with open(txt, 'r', encoding='utf8') as f: |
|
for line in f.readlines(): |
|
json_dat = json.loads(line) |
|
dat.append(json_dat["content"]) |
|
|
|
llm_kwargs['llm_model'] = arguments.llm_to_learn |
|
for batch in fetch_items(dat, arguments.batch): |
|
res = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( |
|
inputs_array=[f"{arguments.prompt_prefix}\n\n{b}" for b in (batch)], |
|
inputs_show_user_array=[f"Show Nothing" for _ in (batch)], |
|
llm_kwargs=llm_kwargs, |
|
chatbot=chatbot, |
|
history_array=[[] for _ in (batch)], |
|
sys_prompt_array=[arguments.system_prompt for _ in (batch)], |
|
max_workers=10 |
|
) |
|
|
|
with open(txt+'.generated.json', 'a+', encoding='utf8') as f: |
|
for b, r in zip(batch, res[1::2]): |
|
f.write(json.dumps({"content":b, "summary":r}, ensure_ascii=False)+'\n') |
|
|
|
promote_file_to_downloadzone(txt+'.generated.json', rename_file='generated.json', chatbot=chatbot) |
|
return |
|
|
|
|
|
|
|
@CatchException |
|
def 启动微调(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request): |
|
""" |
|
txt 输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径 |
|
llm_kwargs gpt模型参数,如温度和top_p等,一般原样传递下去就行 |
|
plugin_kwargs 插件模型的参数 |
|
chatbot 聊天显示框的句柄,用于显示给用户 |
|
history 聊天历史,前情提要 |
|
system_prompt 给gpt的静默提醒 |
|
user_request 当前用户的请求信息(IP地址等) |
|
""" |
|
import subprocess |
|
history = [] |
|
chatbot.append(("这是什么功能?", "[Local Message] 微调数据集生成")) |
|
if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg") |
|
args = plugin_kwargs.get("advanced_arg", None) |
|
if args is None: |
|
chatbot.append(("没给定指令", "退出")) |
|
yield from update_ui(chatbot=chatbot, history=history); return |
|
else: |
|
arguments = string_to_options(arguments=args) |
|
|
|
|
|
|
|
pre_seq_len = arguments.pre_seq_len |
|
learning_rate = arguments.learning_rate |
|
num_gpus = arguments.num_gpus |
|
json_dataset = arguments.json_dataset |
|
ptuning_directory = arguments.ptuning_directory |
|
|
|
command = f"torchrun --standalone --nnodes=1 --nproc-per-node={num_gpus} main.py \ |
|
--do_train \ |
|
--train_file AdvertiseGen/{json_dataset} \ |
|
--validation_file AdvertiseGen/{json_dataset} \ |
|
--preprocessing_num_workers 20 \ |
|
--prompt_column content \ |
|
--response_column summary \ |
|
--overwrite_cache \ |
|
--model_name_or_path THUDM/chatglm2-6b \ |
|
--output_dir output/clothgen-chatglm2-6b-pt-{pre_seq_len}-{learning_rate} \ |
|
--overwrite_output_dir \ |
|
--max_source_length 256 \ |
|
--max_target_length 256 \ |
|
--per_device_train_batch_size 1 \ |
|
--per_device_eval_batch_size 1 \ |
|
--gradient_accumulation_steps 16 \ |
|
--predict_with_generate \ |
|
--max_steps 100 \ |
|
--logging_steps 10 \ |
|
--save_steps 20 \ |
|
--learning_rate {learning_rate} \ |
|
--pre_seq_len {pre_seq_len} \ |
|
--quantization_bit 4" |
|
|
|
process = subprocess.Popen(command, shell=True, cwd=ptuning_directory) |
|
try: |
|
process.communicate(timeout=3600*24) |
|
except subprocess.TimeoutExpired: |
|
process.kill() |
|
return |
|
|