|
""" |
|
该文件中主要包含三个函数 |
|
|
|
不具备多线程能力的函数: |
|
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程 |
|
|
|
具备多线程调用能力的函数 |
|
2. predict_no_ui_long_connection:支持多线程 |
|
""" |
|
|
|
import json |
|
import time |
|
import logging |
|
import requests |
|
import base64 |
|
import os |
|
import glob |
|
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \ |
|
update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files |
|
|
|
|
|
proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \ |
|
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY') |
|
|
|
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \ |
|
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。' |
|
|
|
|
|
def report_invalid_key(key): |
|
if get_conf("BLOCK_INVALID_APIKEY"): |
|
|
|
from request_llms.key_manager import ApiKeyManager |
|
api_key = ApiKeyManager().add_key_to_blacklist(key) |
|
|
|
def get_full_error(chunk, stream_response): |
|
""" |
|
获取完整的从Openai返回的报错 |
|
""" |
|
while True: |
|
try: |
|
chunk += next(stream_response) |
|
except: |
|
break |
|
return chunk |
|
|
|
def decode_chunk(chunk): |
|
|
|
chunk_decoded = chunk.decode() |
|
chunkjson = None |
|
has_choices = False |
|
choice_valid = False |
|
has_content = False |
|
has_role = False |
|
try: |
|
chunkjson = json.loads(chunk_decoded[6:]) |
|
has_choices = 'choices' in chunkjson |
|
if has_choices: choice_valid = (len(chunkjson['choices']) > 0) |
|
if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"] |
|
if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"] |
|
except: |
|
pass |
|
return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role |
|
|
|
from functools import lru_cache |
|
@lru_cache(maxsize=32) |
|
def verify_endpoint(endpoint): |
|
""" |
|
检查endpoint是否可用 |
|
""" |
|
return endpoint |
|
|
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False): |
|
raise NotImplementedError |
|
|
|
|
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None): |
|
|
|
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot) |
|
|
|
if is_any_api_key(inputs): |
|
chatbot._cookies['api_key'] = inputs |
|
chatbot.append(("输入已识别为openai的api_key", what_keys(inputs))) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") |
|
return |
|
elif not is_any_api_key(chatbot._cookies['api_key']): |
|
chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") |
|
return |
|
if not have_recent_file: |
|
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写")) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") |
|
return |
|
if os.path.exists(inputs): |
|
chatbot.append((inputs, "已经接收到您上传的文件,您不需要再重复强调该文件的路径了,请直接输入您的问题。")) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待指令") |
|
return |
|
|
|
|
|
user_input = inputs |
|
if additional_fn is not None: |
|
from core_functional import handle_core_functionality |
|
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot) |
|
|
|
raw_input = inputs |
|
logging.info(f'[raw_input] {raw_input}') |
|
def make_media_input(inputs, image_paths): |
|
for image_path in image_paths: |
|
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>' |
|
return inputs |
|
chatbot.append((make_media_input(inputs, image_paths), "")) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") |
|
|
|
|
|
if is_the_upload_folder(user_input): |
|
chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。") |
|
yield from update_ui(chatbot=chatbot, history=history, msg="正常") |
|
time.sleep(2) |
|
|
|
try: |
|
headers, payload, api_key = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths) |
|
except RuntimeError as e: |
|
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。") |
|
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") |
|
return |
|
|
|
|
|
try: |
|
from .bridge_all import model_info |
|
endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint']) |
|
except: |
|
tb_str = '```\n' + trimmed_format_exc() + '```' |
|
chatbot[-1] = (inputs, tb_str) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") |
|
return |
|
|
|
history.append(make_media_input(inputs, image_paths)) |
|
history.append("") |
|
|
|
retry = 0 |
|
while True: |
|
try: |
|
|
|
response = requests.post(endpoint, headers=headers, proxies=proxies, |
|
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break |
|
except: |
|
retry += 1 |
|
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg)) |
|
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else "" |
|
yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) |
|
if retry > MAX_RETRY: raise TimeoutError |
|
|
|
gpt_replying_buffer = "" |
|
|
|
is_head_of_the_stream = True |
|
if stream: |
|
stream_response = response.iter_lines() |
|
while True: |
|
try: |
|
chunk = next(stream_response) |
|
except StopIteration: |
|
|
|
chunk_decoded = chunk.decode() |
|
error_msg = chunk_decoded |
|
|
|
if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0: |
|
yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。") |
|
break |
|
|
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) |
|
return |
|
|
|
|
|
chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk) |
|
|
|
if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded): |
|
|
|
is_head_of_the_stream = False; continue |
|
|
|
if chunk: |
|
try: |
|
if has_choices and not choice_valid: |
|
|
|
continue |
|
|
|
if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0): |
|
|
|
lastmsg = chatbot[-1][-1] + f"\n\n\n\n「{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」" |
|
yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1) |
|
logging.info(f'[response] {gpt_replying_buffer}') |
|
break |
|
|
|
status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}" |
|
|
|
if has_content: |
|
|
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"] |
|
elif has_role: |
|
|
|
continue |
|
else: |
|
|
|
gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"] |
|
|
|
history[-1] = gpt_replying_buffer |
|
chatbot[-1] = (history[-2], history[-1]) |
|
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) |
|
except Exception as e: |
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") |
|
chunk = get_full_error(chunk, stream_response) |
|
chunk_decoded = chunk.decode() |
|
error_msg = chunk_decoded |
|
chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key) |
|
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) |
|
print(error_msg) |
|
return |
|
|
|
def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key=""): |
|
from .bridge_all import model_info |
|
openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup' |
|
if "reduce the length" in error_msg: |
|
if len(history) >= 2: history[-1] = ""; history[-2] = "" |
|
history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'], |
|
max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) |
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)") |
|
elif "does not exist" in error_msg: |
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.") |
|
elif "Incorrect API key" in error_msg: |
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website); report_invalid_key(api_key) |
|
elif "exceeded your current quota" in error_msg: |
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website); report_invalid_key(api_key) |
|
elif "account is not active" in error_msg: |
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key) |
|
elif "associated with a deactivated account" in error_msg: |
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key) |
|
elif "API key has been deactivated" in error_msg: |
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key) |
|
elif "bad forward key" in error_msg: |
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.") |
|
elif "Not enough point" in error_msg: |
|
chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.") |
|
else: |
|
from toolbox import regular_txt_to_markdown |
|
tb_str = '```\n' + trimmed_format_exc() + '```' |
|
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}") |
|
return chatbot, history |
|
|
|
|
|
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths): |
|
""" |
|
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备 |
|
""" |
|
if not is_any_api_key(llm_kwargs['api_key']): |
|
raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。") |
|
|
|
api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model']) |
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {api_key}" |
|
} |
|
if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG}) |
|
if llm_kwargs['llm_model'].startswith('azure-'): |
|
headers.update({"api-key": api_key}) |
|
if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys(): |
|
azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"] |
|
headers.update({"api-key": azure_api_key_unshared}) |
|
|
|
base64_images = [] |
|
for image_path in image_paths: |
|
base64_images.append(encode_image(image_path)) |
|
|
|
messages = [] |
|
what_i_ask_now = {} |
|
what_i_ask_now["role"] = "user" |
|
what_i_ask_now["content"] = [] |
|
what_i_ask_now["content"].append({ |
|
"type": "text", |
|
"text": inputs |
|
}) |
|
|
|
for image_path, base64_image in zip(image_paths, base64_images): |
|
what_i_ask_now["content"].append({ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{base64_image}" |
|
} |
|
}) |
|
|
|
messages.append(what_i_ask_now) |
|
model = llm_kwargs['llm_model'] |
|
if llm_kwargs['llm_model'].startswith('api2d-'): |
|
model = llm_kwargs['llm_model'][len('api2d-'):] |
|
|
|
payload = { |
|
"model": model, |
|
"messages": messages, |
|
"temperature": llm_kwargs['temperature'], |
|
"top_p": llm_kwargs['top_p'], |
|
"n": 1, |
|
"stream": True, |
|
"max_tokens": get_max_token(llm_kwargs), |
|
"presence_penalty": 0, |
|
"frequency_penalty": 0, |
|
} |
|
try: |
|
print(f" {llm_kwargs['llm_model']} : {inputs[:100]} ..........") |
|
except: |
|
print('输入中可能存在乱码。') |
|
return headers, payload, api_key |
|
|
|
|
|
|