|
import time |
|
import threading |
|
from toolbox import update_ui, Singleton |
|
from multiprocessing import Process, Pipe |
|
from contextlib import redirect_stdout |
|
from request_llms.queued_pipe import create_queue_pipe |
|
|
|
class ThreadLock(object): |
|
def __init__(self): |
|
self._lock = threading.Lock() |
|
|
|
def acquire(self): |
|
|
|
|
|
self._lock.acquire() |
|
|
|
|
|
def release(self): |
|
|
|
|
|
self._lock.release() |
|
|
|
def __enter__(self): |
|
self.acquire() |
|
|
|
def __exit__(self, type, value, traceback): |
|
self.release() |
|
|
|
@Singleton |
|
class GetSingletonHandle(): |
|
def __init__(self): |
|
self.llm_model_already_running = {} |
|
|
|
def get_llm_model_instance(self, cls, *args, **kargs): |
|
if cls not in self.llm_model_already_running: |
|
self.llm_model_already_running[cls] = cls(*args, **kargs) |
|
return self.llm_model_already_running[cls] |
|
elif self.llm_model_already_running[cls].corrupted: |
|
self.llm_model_already_running[cls] = cls(*args, **kargs) |
|
return self.llm_model_already_running[cls] |
|
else: |
|
return self.llm_model_already_running[cls] |
|
|
|
def reset_tqdm_output(): |
|
import sys, tqdm |
|
def status_printer(self, file): |
|
fp = file |
|
if fp in (sys.stderr, sys.stdout): |
|
getattr(sys.stderr, 'flush', lambda: None)() |
|
getattr(sys.stdout, 'flush', lambda: None)() |
|
|
|
def fp_write(s): |
|
print(s) |
|
last_len = [0] |
|
|
|
def print_status(s): |
|
from tqdm.utils import disp_len |
|
len_s = disp_len(s) |
|
fp_write('\r' + s + (' ' * max(last_len[0] - len_s, 0))) |
|
last_len[0] = len_s |
|
return print_status |
|
tqdm.tqdm.status_printer = status_printer |
|
|
|
|
|
class LocalLLMHandle(Process): |
|
def __init__(self): |
|
|
|
super().__init__(daemon=True) |
|
self.is_main_process = True |
|
self.corrupted = False |
|
self.load_model_info() |
|
self.parent, self.child = create_queue_pipe() |
|
self.parent_state, self.child_state = create_queue_pipe() |
|
|
|
self.std_tag = "[Subprocess Message] " |
|
self.running = True |
|
self._model = None |
|
self._tokenizer = None |
|
self.state = "" |
|
self.check_dependency() |
|
self.is_main_process = False |
|
self.start() |
|
self.is_main_process = True |
|
self.threadLock = ThreadLock() |
|
|
|
def get_state(self): |
|
|
|
while self.parent_state.poll(): |
|
self.state = self.parent_state.recv() |
|
return self.state |
|
|
|
def set_state(self, new_state): |
|
|
|
if self.is_main_process: |
|
self.state = new_state |
|
else: |
|
self.child_state.send(new_state) |
|
|
|
def load_model_info(self): |
|
|
|
raise NotImplementedError("Method not implemented yet") |
|
self.model_name = "" |
|
self.cmd_to_install = "" |
|
|
|
def load_model_and_tokenizer(self): |
|
""" |
|
This function should return the model and the tokenizer |
|
""" |
|
|
|
raise NotImplementedError("Method not implemented yet") |
|
|
|
def llm_stream_generator(self, **kwargs): |
|
|
|
raise NotImplementedError("Method not implemented yet") |
|
|
|
def try_to_import_special_deps(self, **kwargs): |
|
""" |
|
import something that will raise error if the user does not install requirement_*.txt |
|
""" |
|
|
|
raise NotImplementedError("Method not implemented yet") |
|
|
|
def check_dependency(self): |
|
|
|
try: |
|
self.try_to_import_special_deps() |
|
self.set_state("`依赖检测通过`") |
|
self.running = True |
|
except: |
|
self.set_state(f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。") |
|
self.running = False |
|
|
|
def run(self): |
|
|
|
|
|
self.child.flush = lambda *args: None |
|
self.child.write = lambda x: self.child.send(self.std_tag + x) |
|
reset_tqdm_output() |
|
self.set_state("`尝试加载模型`") |
|
try: |
|
with redirect_stdout(self.child): |
|
self._model, self._tokenizer = self.load_model_and_tokenizer() |
|
except: |
|
self.set_state("`加载模型失败`") |
|
self.running = False |
|
from toolbox import trimmed_format_exc |
|
self.child.send( |
|
f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n') |
|
self.child.send('[FinishBad]') |
|
raise RuntimeError(f"不能正常加载{self.model_name}的参数!") |
|
|
|
self.set_state("`准备就绪`") |
|
while True: |
|
|
|
kwargs = self.child.recv() |
|
|
|
try: |
|
for response_full in self.llm_stream_generator(**kwargs): |
|
self.child.send(response_full) |
|
|
|
self.child.send('[Finish]') |
|
|
|
except: |
|
from toolbox import trimmed_format_exc |
|
self.child.send( |
|
f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n') |
|
self.child.send('[Finish]') |
|
|
|
def clear_pending_messages(self): |
|
|
|
while True: |
|
if self.parent.poll(): |
|
self.parent.recv() |
|
continue |
|
for _ in range(5): |
|
time.sleep(0.5) |
|
if self.parent.poll(): |
|
r = self.parent.recv() |
|
continue |
|
break |
|
return |
|
|
|
def stream_chat(self, **kwargs): |
|
|
|
if self.get_state() == "`准备就绪`": |
|
yield "`正在等待线程锁,排队中请稍候 ...`" |
|
|
|
with self.threadLock: |
|
if self.parent.poll(): |
|
yield "`排队中请稍候 ...`" |
|
self.clear_pending_messages() |
|
self.parent.send(kwargs) |
|
std_out = "" |
|
std_out_clip_len = 4096 |
|
while True: |
|
res = self.parent.recv() |
|
|
|
if res.startswith(self.std_tag): |
|
new_output = res[len(self.std_tag):] |
|
std_out = std_out[:std_out_clip_len] |
|
print(new_output, end='') |
|
std_out = new_output + std_out |
|
yield self.std_tag + '\n```\n' + std_out + '\n```\n' |
|
elif res == '[Finish]': |
|
break |
|
elif res == '[FinishBad]': |
|
self.running = False |
|
self.corrupted = True |
|
break |
|
else: |
|
std_out = "" |
|
yield res |
|
|
|
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'): |
|
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……" |
|
|
|
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False): |
|
""" |
|
refer to request_llms/bridge_all.py |
|
""" |
|
_llm_handle = GetSingletonHandle().get_llm_model_instance(LLMSingletonClass) |
|
if len(observe_window) >= 1: |
|
observe_window[0] = load_message + "\n\n" + _llm_handle.get_state() |
|
if not _llm_handle.running: |
|
raise RuntimeError(_llm_handle.get_state()) |
|
|
|
if history_format == 'classic': |
|
|
|
history_feedin = [] |
|
history_feedin.append([sys_prompt, "Certainly!"]) |
|
for i in range(len(history)//2): |
|
history_feedin.append([history[2*i], history[2*i+1]]) |
|
elif history_format == 'chatglm3': |
|
|
|
conversation_cnt = len(history) // 2 |
|
history_feedin = [{"role": "system", "content": sys_prompt}] |
|
if conversation_cnt: |
|
for index in range(0, 2*conversation_cnt, 2): |
|
what_i_have_asked = {} |
|
what_i_have_asked["role"] = "user" |
|
what_i_have_asked["content"] = history[index] |
|
what_gpt_answer = {} |
|
what_gpt_answer["role"] = "assistant" |
|
what_gpt_answer["content"] = history[index+1] |
|
if what_i_have_asked["content"] != "": |
|
if what_gpt_answer["content"] == "": |
|
continue |
|
history_feedin.append(what_i_have_asked) |
|
history_feedin.append(what_gpt_answer) |
|
else: |
|
history_feedin[-1]['content'] = what_gpt_answer['content'] |
|
|
|
watch_dog_patience = 5 |
|
response = "" |
|
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): |
|
if len(observe_window) >= 1: |
|
observe_window[0] = response |
|
if len(observe_window) >= 2: |
|
if (time.time()-observe_window[1]) > watch_dog_patience: |
|
raise RuntimeError("程序终止。") |
|
return response |
|
|
|
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None): |
|
""" |
|
refer to request_llms/bridge_all.py |
|
""" |
|
chatbot.append((inputs, "")) |
|
|
|
_llm_handle = GetSingletonHandle().get_llm_model_instance(LLMSingletonClass) |
|
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.get_state()) |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
if not _llm_handle.running: |
|
raise RuntimeError(_llm_handle.get_state()) |
|
|
|
if additional_fn is not None: |
|
from core_functional import handle_core_functionality |
|
inputs, history = handle_core_functionality( |
|
additional_fn, inputs, history, chatbot) |
|
|
|
|
|
if history_format == 'classic': |
|
|
|
history_feedin = [] |
|
history_feedin.append([system_prompt, "Certainly!"]) |
|
for i in range(len(history)//2): |
|
history_feedin.append([history[2*i], history[2*i+1]]) |
|
elif history_format == 'chatglm3': |
|
|
|
conversation_cnt = len(history) // 2 |
|
history_feedin = [{"role": "system", "content": system_prompt}] |
|
if conversation_cnt: |
|
for index in range(0, 2*conversation_cnt, 2): |
|
what_i_have_asked = {} |
|
what_i_have_asked["role"] = "user" |
|
what_i_have_asked["content"] = history[index] |
|
what_gpt_answer = {} |
|
what_gpt_answer["role"] = "assistant" |
|
what_gpt_answer["content"] = history[index+1] |
|
if what_i_have_asked["content"] != "": |
|
if what_gpt_answer["content"] == "": |
|
continue |
|
history_feedin.append(what_i_have_asked) |
|
history_feedin.append(what_gpt_answer) |
|
else: |
|
history_feedin[-1]['content'] = what_gpt_answer['content'] |
|
|
|
|
|
response = f"[Local Message] 等待{model_name}响应中 ..." |
|
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']): |
|
chatbot[-1] = (inputs, response) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
|
|
if response == f"[Local Message] 等待{model_name}响应中 ...": |
|
response = f"[Local Message] {model_name}响应异常 ..." |
|
history.extend([inputs, response]) |
|
yield from update_ui(chatbot=chatbot, history=history) |
|
|
|
return predict_no_ui_long_connection, predict |
|
|