import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("microsoft/Phi-3.5-mini-instruct") # Predefined prompts prompts = [ "Tell me a joke about programming", "Write a short story about a time-traveling robot", "Explain quantum computing to a 5-year-old", "Create a recipe for the most unusual pizza", "Describe an alien civilization's first contact with Earth" ] def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.text_generation( prompt="\n".join([m["content"] for m in messages]), max_new_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.token.text response += token yield response def update_textbox(prompt): return gr.Textbox.update(value=prompt) with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.ClearButton([msg, chatbot]) with gr.Accordion("Advanced options", open=False): system = gr.Textbox(value="You are a friendly Chatbot.", label="System message") max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") prompt_dropdown = gr.Dropdown(choices=prompts, label="Select a premade prompt") prompt_dropdown.change(update_textbox, inputs=[prompt_dropdown], outputs=[msg]) msg.submit(respond, [msg, chatbot, system, max_tokens, temperature, top_p], chatbot) clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch()