Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,023 Bytes
6ed1db6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.chdir(\"..\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from diffusers.pipelines import FluxPipeline\n",
"from src.condition import Condition\n",
"from PIL import Image\n",
"\n",
"from src.generate import generate, seed_everything"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pipe = FluxPipeline.from_pretrained(\n",
" \"black-forest-labs/FLUX.1-schnell\", torch_dtype=torch.bfloat16\n",
")\n",
"pipe = pipe.to(\"cuda\")\n",
"pipe.load_lora_weights(\n",
" \"Yuanshi/OminiControl\",\n",
" weight_name=f\"omini/subject_512.safetensors\",\n",
" adapter_name=\"subject\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image = Image.open(\"assets/penguin.jpg\").convert(\"RGB\").resize((512, 512))\n",
"\n",
"condition = Condition(\"subject\", image)\n",
"\n",
"prompt = \"On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.\"\n",
"\n",
"\n",
"seed_everything(0)\n",
"\n",
"result_img = generate(\n",
" pipe,\n",
" prompt=prompt,\n",
" conditions=[condition],\n",
" num_inference_steps=8,\n",
" height=512,\n",
" width=512,\n",
").images[0]\n",
"\n",
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
"concat_image.paste(image, (0, 0))\n",
"concat_image.paste(result_img, (512, 0))\n",
"concat_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image = Image.open(\"assets/tshirt.jpg\").convert(\"RGB\").resize((512, 512))\n",
"\n",
"condition = Condition(\"subject\", image)\n",
"\n",
"prompt = \"On the beach, a lady sits under a beach umbrella. She's wearing this shirt and has a big smile on her face, with her surfboard hehind her. The sun is setting in the background. The sky is a beautiful shade of orange and purple.\"\n",
"\n",
"\n",
"seed_everything()\n",
"\n",
"result_img = generate(\n",
" pipe,\n",
" prompt=prompt,\n",
" conditions=[condition],\n",
" num_inference_steps=8,\n",
" height=512,\n",
" width=512,\n",
").images[0]\n",
"\n",
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
"concat_image.paste(condition.condition, (0, 0))\n",
"concat_image.paste(result_img, (512, 0))\n",
"concat_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image = Image.open(\"assets/rc_car.jpg\").convert(\"RGB\").resize((512, 512))\n",
"\n",
"condition = Condition(\"subject\", image)\n",
"\n",
"prompt = \"A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.\"\n",
"\n",
"seed_everything()\n",
"\n",
"result_img = generate(\n",
" pipe,\n",
" prompt=prompt,\n",
" conditions=[condition],\n",
" num_inference_steps=8,\n",
" height=512,\n",
" width=512,\n",
").images[0]\n",
"\n",
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
"concat_image.paste(condition.condition, (0, 0))\n",
"concat_image.paste(result_img, (512, 0))\n",
"concat_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image = Image.open(\"assets/clock.jpg\").convert(\"RGB\").resize((512, 512))\n",
"\n",
"condition = Condition(\"subject\", image)\n",
"\n",
"prompt = \"In a Bauhaus style room, this item is placed on a shiny glass table, with a vase of flowers next to it. In the afternoon sun, the shadows of the blinds are cast on the wall.\"\n",
"\n",
"seed_everything()\n",
"\n",
"result_img = generate(\n",
" pipe,\n",
" prompt=prompt,\n",
" conditions=[condition],\n",
" num_inference_steps=8,\n",
" height=512,\n",
" width=512,\n",
").images[0]\n",
"\n",
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
"concat_image.paste(condition.condition, (0, 0))\n",
"concat_image.paste(result_img, (512, 0))\n",
"concat_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"image = Image.open(\"assets/oranges.jpg\").convert(\"RGB\").resize((512, 512))\n",
"\n",
"condition = Condition(\"subject\", image)\n",
"\n",
"prompt = \"A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.\"\n",
"\n",
"seed_everything()\n",
"\n",
"result_img = generate(\n",
" pipe,\n",
" prompt=prompt,\n",
" conditions=[condition],\n",
" num_inference_steps=8,\n",
" height=512,\n",
" width=512,\n",
").images[0]\n",
"\n",
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
"concat_image.paste(condition.condition, (0, 0))\n",
"concat_image.paste(result_img, (512, 0))\n",
"concat_image"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|