File size: 6,023 Bytes
6ed1db6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "os.chdir(\"..\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from diffusers.pipelines import FluxPipeline\n",
    "from src.condition import Condition\n",
    "from PIL import Image\n",
    "\n",
    "from src.generate import generate, seed_everything"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pipe = FluxPipeline.from_pretrained(\n",
    "    \"black-forest-labs/FLUX.1-schnell\", torch_dtype=torch.bfloat16\n",
    ")\n",
    "pipe = pipe.to(\"cuda\")\n",
    "pipe.load_lora_weights(\n",
    "    \"Yuanshi/OminiControl\",\n",
    "    weight_name=f\"omini/subject_512.safetensors\",\n",
    "    adapter_name=\"subject\",\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image = Image.open(\"assets/penguin.jpg\").convert(\"RGB\").resize((512, 512))\n",
    "\n",
    "condition = Condition(\"subject\", image)\n",
    "\n",
    "prompt = \"On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.\"\n",
    "\n",
    "\n",
    "seed_everything(0)\n",
    "\n",
    "result_img = generate(\n",
    "    pipe,\n",
    "    prompt=prompt,\n",
    "    conditions=[condition],\n",
    "    num_inference_steps=8,\n",
    "    height=512,\n",
    "    width=512,\n",
    ").images[0]\n",
    "\n",
    "concat_image = Image.new(\"RGB\", (1024, 512))\n",
    "concat_image.paste(image, (0, 0))\n",
    "concat_image.paste(result_img, (512, 0))\n",
    "concat_image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image = Image.open(\"assets/tshirt.jpg\").convert(\"RGB\").resize((512, 512))\n",
    "\n",
    "condition = Condition(\"subject\", image)\n",
    "\n",
    "prompt = \"On the beach, a lady sits under a beach umbrella. She's wearing this shirt and has a big smile on her face, with her surfboard hehind her. The sun is setting in the background. The sky is a beautiful shade of orange and purple.\"\n",
    "\n",
    "\n",
    "seed_everything()\n",
    "\n",
    "result_img = generate(\n",
    "    pipe,\n",
    "    prompt=prompt,\n",
    "    conditions=[condition],\n",
    "    num_inference_steps=8,\n",
    "    height=512,\n",
    "    width=512,\n",
    ").images[0]\n",
    "\n",
    "concat_image = Image.new(\"RGB\", (1024, 512))\n",
    "concat_image.paste(condition.condition, (0, 0))\n",
    "concat_image.paste(result_img, (512, 0))\n",
    "concat_image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image = Image.open(\"assets/rc_car.jpg\").convert(\"RGB\").resize((512, 512))\n",
    "\n",
    "condition = Condition(\"subject\", image)\n",
    "\n",
    "prompt = \"A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.\"\n",
    "\n",
    "seed_everything()\n",
    "\n",
    "result_img = generate(\n",
    "    pipe,\n",
    "    prompt=prompt,\n",
    "    conditions=[condition],\n",
    "    num_inference_steps=8,\n",
    "    height=512,\n",
    "    width=512,\n",
    ").images[0]\n",
    "\n",
    "concat_image = Image.new(\"RGB\", (1024, 512))\n",
    "concat_image.paste(condition.condition, (0, 0))\n",
    "concat_image.paste(result_img, (512, 0))\n",
    "concat_image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image = Image.open(\"assets/clock.jpg\").convert(\"RGB\").resize((512, 512))\n",
    "\n",
    "condition = Condition(\"subject\", image)\n",
    "\n",
    "prompt = \"In a Bauhaus style room, this item is placed on a shiny glass table, with a vase of flowers next to it. In the afternoon sun, the shadows of the blinds are cast on the wall.\"\n",
    "\n",
    "seed_everything()\n",
    "\n",
    "result_img = generate(\n",
    "    pipe,\n",
    "    prompt=prompt,\n",
    "    conditions=[condition],\n",
    "    num_inference_steps=8,\n",
    "    height=512,\n",
    "    width=512,\n",
    ").images[0]\n",
    "\n",
    "concat_image = Image.new(\"RGB\", (1024, 512))\n",
    "concat_image.paste(condition.condition, (0, 0))\n",
    "concat_image.paste(result_img, (512, 0))\n",
    "concat_image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "image = Image.open(\"assets/oranges.jpg\").convert(\"RGB\").resize((512, 512))\n",
    "\n",
    "condition = Condition(\"subject\", image)\n",
    "\n",
    "prompt = \"A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.\"\n",
    "\n",
    "seed_everything()\n",
    "\n",
    "result_img = generate(\n",
    "    pipe,\n",
    "    prompt=prompt,\n",
    "    conditions=[condition],\n",
    "    num_inference_steps=8,\n",
    "    height=512,\n",
    "    width=512,\n",
    ").images[0]\n",
    "\n",
    "concat_image = Image.new(\"RGB\", (1024, 512))\n",
    "concat_image.paste(condition.condition, (0, 0))\n",
    "concat_image.paste(result_img, (512, 0))\n",
    "concat_image"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}