File size: 4,049 Bytes
6ed1db6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
from typing import Optional, Union, List, Tuple
from diffusers.pipelines import FluxPipeline
from PIL import Image, ImageFilter
import numpy as np
import cv2

condition_dict = {
    "depth": 0,
    "canny": 1,
    "subject": 4,
    "coloring": 6,
    "deblurring": 7,
    "fill": 9,
}


class Condition(object):
    def __init__(
        self,
        condition_type: str,
        raw_img: Union[Image.Image, torch.Tensor] = None,
        condition: Union[Image.Image, torch.Tensor] = None,
        mask=None,
    ) -> None:
        self.condition_type = condition_type
        assert raw_img is not None or condition is not None
        if raw_img is not None:
            self.condition = self.get_condition(condition_type, raw_img)
        else:
            self.condition = condition
        # TODO: Add mask support
        assert mask is None, "Mask not supported yet"

    def get_condition(
        self, condition_type: str, raw_img: Union[Image.Image, torch.Tensor]
    ) -> Union[Image.Image, torch.Tensor]:
        """
        Returns the condition image.
        """
        if condition_type == "depth":
            from transformers import pipeline

            depth_pipe = pipeline(
                task="depth-estimation",
                model="LiheYoung/depth-anything-small-hf",
                device="cuda",
            )
            source_image = raw_img.convert("RGB")
            condition_img = depth_pipe(source_image)["depth"].convert("RGB")
            return condition_img
        elif condition_type == "canny":
            img = np.array(raw_img)
            edges = cv2.Canny(img, 100, 200)
            edges = Image.fromarray(edges).convert("RGB")
            return edges
        elif condition_type == "subject":
            return raw_img
        elif condition_type == "coloring":
            return raw_img.convert("L").convert("RGB")
        elif condition_type == "deblurring":
            condition_image = (
                raw_img.convert("RGB")
                .filter(ImageFilter.GaussianBlur(10))
                .convert("RGB")
            )
            return condition_image
        elif condition_type == "fill":
            return raw_img.convert("RGB")
        return self.condition

    @property
    def type_id(self) -> int:
        """
        Returns the type id of the condition.
        """
        return condition_dict[self.condition_type]

    @classmethod
    def get_type_id(cls, condition_type: str) -> int:
        """
        Returns the type id of the condition.
        """
        return condition_dict[condition_type]

    def _encode_image(self, pipe: FluxPipeline, cond_img: Image.Image) -> torch.Tensor:
        """
        Encodes an image condition into tokens using the pipeline.
        """
        cond_img = pipe.image_processor.preprocess(cond_img)
        cond_img = cond_img.to(pipe.device).to(pipe.dtype)
        cond_img = pipe.vae.encode(cond_img).latent_dist.sample()
        cond_img = (
            cond_img - pipe.vae.config.shift_factor
        ) * pipe.vae.config.scaling_factor
        cond_tokens = pipe._pack_latents(cond_img, *cond_img.shape)
        cond_ids = pipe._prepare_latent_image_ids(
            cond_img.shape[0],
            cond_img.shape[2],
            cond_img.shape[3],
            pipe.device,
            pipe.dtype,
        )
        return cond_tokens, cond_ids

    def encode(self, pipe: FluxPipeline) -> Tuple[torch.Tensor, torch.Tensor, int]:
        """
        Encodes the condition into tokens, ids and type_id.
        """
        if self.condition_type in [
            "depth",
            "canny",
            "subject",
            "coloring",
            "deblurring",
            "fill",
        ]:
            tokens, ids = self._encode_image(pipe, self.condition)
        else:
            raise NotImplementedError(
                f"Condition type {self.condition_type} not implemented"
            )
        type_id = torch.ones_like(ids[:, :1]) * self.type_id
        return tokens, ids, type_id