Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,16 @@
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
|
4 |
-
# ๋ชจ๋ธ ๋ก๋
|
5 |
model_name = "Yuchan5386/NaturaAI-1"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
9 |
-
# ํ
์คํธ ์์ฑ ํจ์
|
10 |
def generate_text(prompt):
|
11 |
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
outputs = model.generate(**inputs)
|
13 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
|
15 |
-
|
16 |
-
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", api=True)
|
17 |
|
18 |
-
#
|
19 |
-
iface.launch(share=True)
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
|
|
|
4 |
model_name = "Yuchan5386/NaturaAI-1"
|
5 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
6 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
|
|
|
8 |
def generate_text(prompt):
|
9 |
inputs = tokenizer(prompt, return_tensors="pt")
|
10 |
outputs = model.generate(**inputs)
|
11 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
12 |
|
13 |
+
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
|
|
14 |
|
15 |
+
# API๋ก ํธ์ถํ ์ ์๋๋ก ์ค์
|
16 |
+
iface.launch(share=True, api=True)
|