liuyizhang
add transformers_4_35_0
1ce5e18
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
logger = logging.get_logger(__name__)
class ReturnType(enum.Enum):
TENSORS = 0
TEXT = 1
@add_end_docstrings(PIPELINE_INIT_ARGS)
class Text2TextGenerationPipeline(Pipeline):
"""
Pipeline for text to text generation using seq2seq models.
Example:
```python
>>> from transformers import pipeline
>>> generator = pipeline(model="mrm8488/t5-base-finetuned-question-generation-ap")
>>> generator(
... "answer: Manuel context: Manuel has created RuPERTa-base with the support of HF-Transformers and Google"
... )
[{'generated_text': 'question: Who created the RuPERTa-base?'}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial). You can pass text
generation parameters to this pipeline to control stopping criteria, decoding strategy, and more. Learn more about
text generation parameters in [Text generation strategies](../generation_strategies) and [Text
generation](text_generation).
This Text2TextGenerationPipeline pipeline can currently be loaded from [`pipeline`] using the following task
identifier: `"text2text-generation"`.
The models that this pipeline can use are models that have been fine-tuned on a translation task. See the
up-to-date list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=text2text-generation). For a list of available
parameters, see the [following
documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate)
Usage:
```python
text2text_generator = pipeline("text2text-generation")
text2text_generator("question: What is 42 ? context: 42 is the answer to life, the universe and everything")
```"""
# Used in the return key of the pipeline.
return_name = "generated"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
if self.framework == "tf"
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
def _sanitize_parameters(
self,
return_tensors=None,
return_text=None,
return_type=None,
clean_up_tokenization_spaces=None,
truncation=None,
stop_sequence=None,
**generate_kwargs,
):
preprocess_params = {}
if truncation is not None:
preprocess_params["truncation"] = truncation
forward_params = generate_kwargs
postprocess_params = {}
if return_tensors is not None and return_type is None:
return_type = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
postprocess_params["return_type"] = return_type
if clean_up_tokenization_spaces is not None:
postprocess_params["clean_up_tokenization_spaces"] = clean_up_tokenization_spaces
if stop_sequence is not None:
stop_sequence_ids = self.tokenizer.encode(stop_sequence, add_special_tokens=False)
if len(stop_sequence_ids) > 1:
warnings.warn(
"Stopping on a multiple token sequence is not yet supported on transformers. The first token of"
" the stop sequence will be used as the stop sequence string in the interim."
)
generate_kwargs["eos_token_id"] = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def check_inputs(self, input_length: int, min_length: int, max_length: int):
"""
Checks whether there might be something wrong with given input with regard to the model.
"""
return True
def _parse_and_tokenize(self, *args, truncation):
prefix = self.model.config.prefix if self.model.config.prefix is not None else ""
if isinstance(args[0], list):
if self.tokenizer.pad_token_id is None:
raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input")
args = ([prefix + arg for arg in args[0]],)
padding = True
elif isinstance(args[0], str):
args = (prefix + args[0],)
padding = False
else:
raise ValueError(
f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`"
)
inputs = self.tokenizer(*args, padding=padding, truncation=truncation, return_tensors=self.framework)
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__(self, *args, **kwargs):
r"""
Generate the output text(s) using text(s) given as inputs.
Args:
args (`str` or `List[str]`):
Input text for the encoder.
return_tensors (`bool`, *optional*, defaults to `False`):
Whether or not to include the tensors of predictions (as token indices) in the outputs.
return_text (`bool`, *optional*, defaults to `True`):
Whether or not to include the decoded texts in the outputs.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the potential extra spaces in the text output.
truncation (`TruncationStrategy`, *optional*, defaults to `TruncationStrategy.DO_NOT_TRUNCATE`):
The truncation strategy for the tokenization within the pipeline. `TruncationStrategy.DO_NOT_TRUNCATE`
(default) will never truncate, but it is sometimes desirable to truncate the input to fit the model's
max_length instead of throwing an error down the line.
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
- **generated_text** (`str`, present when `return_text=True`) -- The generated text.
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
ids of the generated text.
"""
result = super().__call__(*args, **kwargs)
if (
isinstance(args[0], list)
and all(isinstance(el, str) for el in args[0])
and all(len(res) == 1 for res in result)
):
return [res[0] for res in result]
return result
def preprocess(self, inputs, truncation=TruncationStrategy.DO_NOT_TRUNCATE, **kwargs):
inputs = self._parse_and_tokenize(inputs, truncation=truncation, **kwargs)
return inputs
def _forward(self, model_inputs, **generate_kwargs):
if self.framework == "pt":
in_b, input_length = model_inputs["input_ids"].shape
elif self.framework == "tf":
in_b, input_length = tf.shape(model_inputs["input_ids"]).numpy()
self.check_inputs(
input_length,
generate_kwargs.get("min_length", self.model.config.min_length),
generate_kwargs.get("max_length", self.model.config.max_length),
)
output_ids = self.model.generate(**model_inputs, **generate_kwargs)
out_b = output_ids.shape[0]
if self.framework == "pt":
output_ids = output_ids.reshape(in_b, out_b // in_b, *output_ids.shape[1:])
elif self.framework == "tf":
output_ids = tf.reshape(output_ids, (in_b, out_b // in_b, *output_ids.shape[1:]))
return {"output_ids": output_ids}
def postprocess(self, model_outputs, return_type=ReturnType.TEXT, clean_up_tokenization_spaces=False):
records = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
record = {f"{self.return_name}_token_ids": output_ids}
elif return_type == ReturnType.TEXT:
record = {
f"{self.return_name}_text": self.tokenizer.decode(
output_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
)
}
records.append(record)
return records
@add_end_docstrings(PIPELINE_INIT_ARGS)
class SummarizationPipeline(Text2TextGenerationPipeline):
"""
Summarize news articles and other documents.
This summarizing pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"summarization"`.
The models that this pipeline can use are models that have been fine-tuned on a summarization task, which is
currently, '*bart-large-cnn*', '*t5-small*', '*t5-base*', '*t5-large*', '*t5-3b*', '*t5-11b*'. See the up-to-date
list of available models on [huggingface.co/models](https://huggingface.co/models?filter=summarization). For a list
of available parameters, see the [following
documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate)
Usage:
```python
# use bart in pytorch
summarizer = pipeline("summarization")
summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20)
# use t5 in tf
summarizer = pipeline("summarization", model="t5-base", tokenizer="t5-base", framework="tf")
summarizer("An apple a day, keeps the doctor away", min_length=5, max_length=20)
```"""
# Used in the return key of the pipeline.
return_name = "summary"
def __call__(self, *args, **kwargs):
r"""
Summarize the text(s) given as inputs.
Args:
documents (*str* or `List[str]`):
One or several articles (or one list of articles) to summarize.
return_text (`bool`, *optional*, defaults to `True`):
Whether or not to include the decoded texts in the outputs
return_tensors (`bool`, *optional*, defaults to `False`):
Whether or not to include the tensors of predictions (as token indices) in the outputs.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the potential extra spaces in the text output.
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
- **summary_text** (`str`, present when `return_text=True`) -- The summary of the corresponding input.
- **summary_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
ids of the summary.
"""
return super().__call__(*args, **kwargs)
def check_inputs(self, input_length: int, min_length: int, max_length: int) -> bool:
"""
Checks whether there might be something wrong with given input with regard to the model.
"""
if max_length < min_length:
logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}.")
if input_length < max_length:
logger.warning(
f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is "
"a summarization task, where outputs shorter than the input are typically wanted, you might "
f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})"
)
@add_end_docstrings(PIPELINE_INIT_ARGS)
class TranslationPipeline(Text2TextGenerationPipeline):
"""
Translates from one language to another.
This translation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"translation_xx_to_yy"`.
The models that this pipeline can use are models that have been fine-tuned on a translation task. See the
up-to-date list of available models on [huggingface.co/models](https://huggingface.co/models?filter=translation).
For a list of available parameters, see the [following
documentation](https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.generation.GenerationMixin.generate)
Usage:
```python
en_fr_translator = pipeline("translation_en_to_fr")
en_fr_translator("How old are you?")
```"""
# Used in the return key of the pipeline.
return_name = "translation"
def check_inputs(self, input_length: int, min_length: int, max_length: int):
if input_length > 0.9 * max_length:
logger.warning(
f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider "
"increasing your max_length manually, e.g. translator('...', max_length=400)"
)
return True
def preprocess(self, *args, truncation=TruncationStrategy.DO_NOT_TRUNCATE, src_lang=None, tgt_lang=None):
if getattr(self.tokenizer, "_build_translation_inputs", None):
return self.tokenizer._build_translation_inputs(
*args, return_tensors=self.framework, truncation=truncation, src_lang=src_lang, tgt_lang=tgt_lang
)
else:
return super()._parse_and_tokenize(*args, truncation=truncation)
def _sanitize_parameters(self, src_lang=None, tgt_lang=None, **kwargs):
preprocess_params, forward_params, postprocess_params = super()._sanitize_parameters(**kwargs)
if src_lang is not None:
preprocess_params["src_lang"] = src_lang
if tgt_lang is not None:
preprocess_params["tgt_lang"] = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
task = kwargs.get("task", self.task)
items = task.split("_")
if task and len(items) == 4:
# translation, XX, to YY
preprocess_params["src_lang"] = items[1]
preprocess_params["tgt_lang"] = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__(self, *args, **kwargs):
r"""
Translate the text(s) given as inputs.
Args:
args (`str` or `List[str]`):
Texts to be translated.
return_tensors (`bool`, *optional*, defaults to `False`):
Whether or not to include the tensors of predictions (as token indices) in the outputs.
return_text (`bool`, *optional*, defaults to `True`):
Whether or not to include the decoded texts in the outputs.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the potential extra spaces in the text output.
src_lang (`str`, *optional*):
The language of the input. Might be required for multilingual models. Will not have any effect for
single pair translation models
tgt_lang (`str`, *optional*):
The language of the desired output. Might be required for multilingual models. Will not have any effect
for single pair translation models
generate_kwargs:
Additional keyword arguments to pass along to the generate method of the model (see the generate method
corresponding to your framework [here](./model#generative-models)).
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following keys:
- **translation_text** (`str`, present when `return_text=True`) -- The translation.
- **translation_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The
token ids of the translation.
"""
return super().__call__(*args, **kwargs)