Spaces:
Runtime error
Runtime error
File size: 9,829 Bytes
da48dbe 487ee6d da48dbe 487ee6d da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import grad
from torch.nn import init
def gradient(inputs, outputs):
d_points = torch.ones_like(outputs, requires_grad=False, device=outputs.device)
points_grad = grad(
outputs=outputs,
inputs=inputs,
grad_outputs=d_points,
create_graph=True,
retain_graph=True,
only_inputs=True,
allow_unused=True,
)[0]
return points_grad
# def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
# "3x3 convolution with padding"
# return nn.Conv2d(in_planes, out_planes, kernel_size=3,
# stride=strd, padding=padding, bias=bias)
def conv3x3(in_planes, out_planes, kernel=3, strd=1, dilation=1, padding=1, bias=False):
"3x3 convolution with padding"
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=kernel,
dilation=dilation,
stride=strd,
padding=padding,
bias=bias,
)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def init_weights(net, init_type="normal", init_gain=0.02):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m,
"weight") and (classname.find("Conv") != -1 or classname.find("Linear") != -1):
if init_type == "normal":
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == "xavier":
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == "kaiming":
init.kaiming_normal_(m.weight.data, a=0, mode="fan_in")
elif init_type == "orthogonal":
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError(
"initialization method [%s] is not implemented" % init_type
)
if hasattr(m, "bias") and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif (
classname.find("BatchNorm2d") != -1
): # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
# print('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function <init_func>
def init_net(net, init_type="xavier", init_gain=0.02, gpu_ids=[]):
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
Parameters:
net (network) -- the network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Return an initialized network.
"""
if len(gpu_ids) > 0:
assert torch.cuda.is_available()
net = torch.nn.DataParallel(net) # multi-GPUs
init_weights(net, init_type, init_gain=init_gain)
return net
def imageSpaceRotation(xy, rot):
"""
args:
xy: (B, 2, N) input
rot: (B, 2) x,y axis rotation angles
rotation center will be always image center (other rotation center can be represented by additional z translation)
"""
disp = rot.unsqueeze(2).sin().expand_as(xy)
return (disp * xy).sum(dim=1)
def cal_gradient_penalty(
netD, real_data, fake_data, device, type="mixed", constant=1.0, lambda_gp=10.0
):
"""Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
Arguments:
netD (network) -- discriminator network
real_data (tensor array) -- real images
fake_data (tensor array) -- generated images from the generator
device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
type (str) -- if we mix real and fake data or not [real | fake | mixed].
constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2
lambda_gp (float) -- weight for this loss
Returns the gradient penalty loss
"""
if lambda_gp > 0.0:
# either use real images, fake images, or a linear interpolation of two.
if type == "real":
interpolatesv = real_data
elif type == "fake":
interpolatesv = fake_data
elif type == "mixed":
alpha = torch.rand(real_data.shape[0], 1)
alpha = (
alpha.expand(real_data.shape[0],
real_data.nelement() //
real_data.shape[0]).contiguous().view(*real_data.shape)
)
alpha = alpha.to(device)
interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
else:
raise NotImplementedError("{} not implemented".format(type))
interpolatesv.requires_grad_(True)
disc_interpolates = netD(interpolatesv)
gradients = torch.autograd.grad(
outputs=disc_interpolates,
inputs=interpolatesv,
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
create_graph=True,
retain_graph=True,
only_inputs=True,
)
gradients = gradients[0].view(real_data.size(0), -1) # flat the data
gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant)**
2).mean() * lambda_gp # added eps
return gradient_penalty, gradients
else:
return 0.0, None
def get_norm_layer(norm_type="instance"):
"""Return a normalization layer
Parameters:
norm_type (str) -- the name of the normalization layer: batch | instance | none
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
"""
if norm_type == "batch":
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
elif norm_type == "instance":
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
elif norm_type == "group":
norm_layer = functools.partial(nn.GroupNorm, 32)
elif norm_type == "none":
norm_layer = None
else:
raise NotImplementedError("normalization layer [%s] is not found" % norm_type)
return norm_layer
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
class ConvBlock(nn.Module):
def __init__(self, in_planes, out_planes, opt):
super(ConvBlock, self).__init__()
[k, s, d, p] = opt.conv3x3
self.conv1 = conv3x3(in_planes, int(out_planes / 2), k, s, d, p)
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4), k, s, d, p)
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4), k, s, d, p)
if opt.norm == "batch":
self.bn1 = nn.BatchNorm2d(in_planes)
self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
self.bn4 = nn.BatchNorm2d(in_planes)
elif opt.norm == "group":
self.bn1 = nn.GroupNorm(32, in_planes)
self.bn2 = nn.GroupNorm(32, int(out_planes / 2))
self.bn3 = nn.GroupNorm(32, int(out_planes / 4))
self.bn4 = nn.GroupNorm(32, in_planes)
if in_planes != out_planes:
self.downsample = nn.Sequential(
self.bn4,
nn.ReLU(True),
nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False),
)
else:
self.downsample = None
def forward(self, x):
residual = x
out1 = self.bn1(x)
out1 = F.relu(out1, True)
out1 = self.conv1(out1)
out2 = self.bn2(out1)
out2 = F.relu(out2, True)
out2 = self.conv2(out2)
out3 = self.bn3(out2)
out3 = F.relu(out3, True)
out3 = self.conv3(out3)
out3 = torch.cat((out1, out2, out3), 1)
if self.downsample is not None:
residual = self.downsample(residual)
out3 += residual
return out3
|