File size: 12,327 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
e0ba903
487ee6d
 
 
 
 
da48dbe
487ee6d
da48dbe
 
487ee6d
 
da48dbe
 
487ee6d
 
da48dbe
 
487ee6d
 
da48dbe
 
 
4a4217c
487ee6d
 
da48dbe
 
487ee6d
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
487ee6d
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487ee6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
4a4217c
a36c88f
4a4217c
da48dbe
 
 
 
 
a36c88f
da48dbe
 
 
e0ba903
da48dbe
fb140f6
da48dbe
 
 
 
 
 
fb140f6
 
da48dbe
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
e0ba903
da48dbe
 
e0ba903
fb140f6
da48dbe
fb140f6
da48dbe
487ee6d
 
 
 
a36c88f
4a4217c
 
a36c88f
4a4217c
487ee6d
4a4217c
da48dbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import math
import os
import sys

import cv2
import numpy as np
import torch
from PIL import ImageColor
from pytorch3d.renderer import (
    AlphaCompositor,
    BlendParams,
    FoVOrthographicCameras,
    MeshRasterizer,
    MeshRenderer,
    PointsRasterizationSettings,
    PointsRasterizer,
    PointsRenderer,
    RasterizationSettings,
    SoftSilhouetteShader,
    TexturesVertex,
    blending,
    look_at_view_transform,
)
from pytorch3d.renderer.mesh import TexturesVertex
from pytorch3d.structures import Meshes
import torch.nn.functional as F
from termcolor import colored
from tqdm import tqdm

import lib.common.render_utils as util
from lib.common.imutils import blend_rgb_norm
from lib.dataset.mesh_util import get_visibility


def image2vid(images, vid_path):

    os.makedirs(os.path.dirname(vid_path), exist_ok=True)

    w, h = images[0].size
    videodims = (w, h)
    fourcc = cv2.VideoWriter_fourcc(*"XVID")
    video = cv2.VideoWriter(vid_path, fourcc, len(images) / 5.0, videodims)
    for image in images:
        video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
    video.release()


def query_color(verts, faces, image, device, paint_normal=True):
    """query colors from points and image

    Args:
        verts ([B, 3]): [query verts]
        faces ([M, 3]): [query faces]
        image ([B, 3, H, W]): [full image]

    Returns:
        [np.float]: [return colors]
    """

    verts = verts.float().to(device)
    faces = faces.long().to(device)

    (xy, z) = verts.split([2, 1], dim=1)
    visibility = get_visibility(xy, z, faces[:, [0, 2, 1]]).flatten()
    uv = xy.unsqueeze(0).unsqueeze(2)    # [B, N, 2]
    uv = uv * torch.tensor([1.0, -1.0]).type_as(uv)
    colors = ((
        torch.nn.functional.grid_sample(image, uv, align_corners=True)[0, :, :, 0].permute(1, 0) +
        1.0
    ) * 0.5 * 255.0)
    if paint_normal:
        colors[visibility == 0.0] = ((
            Meshes(verts.unsqueeze(0), faces.unsqueeze(0)).verts_normals_padded().squeeze(0) + 1.0
        ) * 0.5 * 255.0)[visibility == 0.0]
    else:
        colors[visibility == 0.0] = torch.tensor([0.0, 0.0, 0.0]).to(device)

    return colors.detach().cpu()


class cleanShader(torch.nn.Module):
    def __init__(self, blend_params=None):
        super().__init__()
        self.blend_params = blend_params if blend_params is not None else BlendParams()

    def forward(self, fragments, meshes, **kwargs):

        # get renderer output
        blend_params = kwargs.get("blend_params", self.blend_params)
        texels = meshes.sample_textures(fragments)
        images = blending.softmax_rgb_blend(texels, fragments, blend_params, znear=-256, zfar=256)

        return images


class Render:
    def __init__(self, size=512, device=torch.device("cuda:0")):
        self.device = device
        self.size = size

        # camera setting
        self.dis = 100.0
        self.scale = 100.0
        self.mesh_y_center = 0.0

        # speed control
        self.fps = 30
        self.step = 3

        self.cam_pos = {
            "front":
            torch.tensor([
                (0, self.mesh_y_center, self.dis),
                (0, self.mesh_y_center, -self.dis),
            ]), "frontback":
            torch.tensor([
                (0, self.mesh_y_center, self.dis),
                (0, self.mesh_y_center, -self.dis),
            ]), "four":
            torch.tensor([
                (0, self.mesh_y_center, self.dis),
                (self.dis, self.mesh_y_center, 0),
                (0, self.mesh_y_center, -self.dis),
                (-self.dis, self.mesh_y_center, 0),
            ]), "around":
            torch.tensor([(
                100.0 * math.cos(np.pi / 180 * angle), self.mesh_y_center,
                100.0 * math.sin(np.pi / 180 * angle)
            ) for angle in range(0, 360, self.step)])
        }

        self.type = "color"

        self.mesh = None
        self.deform_mesh = None
        self.pcd = None
        self.renderer = None
        self.meshRas = None

        self.uv_rasterizer = util.Pytorch3dRasterizer(self.size)

    def get_camera_batch(self, type="four", idx=None):

        if idx is None:
            idx = np.arange(len(self.cam_pos[type]))

        R, T = look_at_view_transform(
            eye=self.cam_pos[type][idx],
            at=((0, self.mesh_y_center, 0), ),
            up=((0, 1, 0), ),
        )

        cameras = FoVOrthographicCameras(
            device=self.device,
            R=R,
            T=T,
            znear=100.0,
            zfar=-100.0,
            max_y=100.0,
            min_y=-100.0,
            max_x=100.0,
            min_x=-100.0,
            scale_xyz=(self.scale * np.ones(3), ) * len(R),
        )

        return cameras

    def init_renderer(self, camera, type="mesh", bg="gray"):

        blendparam = BlendParams(1e-4, 1e-8, np.array(ImageColor.getrgb(bg)) / 255.0)

        if ("mesh" in type) or ("depth" in type) or ("rgb" in type):

            # rasterizer
            self.raster_settings_mesh = RasterizationSettings(
                image_size=self.size,
                blur_radius=np.log(1.0 / 1e-4) * 1e-7,
                bin_size=-1,
                faces_per_pixel=30,
            )
            self.meshRas = MeshRasterizer(cameras=camera, raster_settings=self.raster_settings_mesh)

            self.renderer = MeshRenderer(
                rasterizer=self.meshRas,
                shader=cleanShader(blend_params=blendparam),
            )

        elif type == "mask":

            self.raster_settings_silhouette = RasterizationSettings(
                image_size=self.size,
                blur_radius=np.log(1.0 / 1e-4 - 1.0) * 5e-5,
                faces_per_pixel=50,
                bin_size=-1,
                cull_backfaces=True,
            )

            self.silhouetteRas = MeshRasterizer(
                cameras=camera, raster_settings=self.raster_settings_silhouette
            )
            self.renderer = MeshRenderer(
                rasterizer=self.silhouetteRas, shader=SoftSilhouetteShader()
            )

        elif type == "pointcloud":
            self.raster_settings_pcd = PointsRasterizationSettings(
                image_size=self.size, radius=0.006, points_per_pixel=10
            )

            self.pcdRas = PointsRasterizer(cameras=camera, raster_settings=self.raster_settings_pcd)
            self.renderer = PointsRenderer(
                rasterizer=self.pcdRas,
                compositor=AlphaCompositor(background_color=(0, 0, 0)),
            )

    def load_meshes(self, verts, faces):
        """load mesh into the pytorch3d renderer

        Args:
            verts ([N,3] / [B,N,3]): array or tensor
            faces ([N,3]/ [B,N,3]): array or tensor
        """

        if isinstance(verts, list):
            V_lst = []
            F_lst = []
            for V, F in zip(verts, faces):
                if not torch.is_tensor(V):
                    V_lst.append(torch.tensor(V).float().to(self.device))
                    F_lst.append(torch.tensor(F).long().to(self.device))
                else:
                    V_lst.append(V.float().to(self.device))
                    F_lst.append(F.long().to(self.device))
            self.meshes = Meshes(V_lst, F_lst).to(self.device)
        else:
            # array or tensor
            if not torch.is_tensor(verts):
                verts = torch.tensor(verts)
                faces = torch.tensor(faces)
            if verts.ndimension() == 2:
                verts = verts.float().unsqueeze(0).to(self.device)
                faces = faces.long().unsqueeze(0).to(self.device)
            if verts.shape[0] != faces.shape[0]:
                faces = faces.repeat(len(verts), 1, 1).to(self.device)
            self.meshes = Meshes(verts, faces).to(self.device)

        # texture only support single mesh
        if len(self.meshes) == 1:
            self.meshes.textures = TexturesVertex(
                verts_features=(self.meshes.verts_normals_padded() + 1.0) * 0.5
            )

    def get_image(self, cam_type="frontback", type="rgb", bg="gray"):

        self.init_renderer(self.get_camera_batch(cam_type), type, bg)

        img_lst = []

        for mesh_id in range(len(self.meshes)):

            current_mesh = self.meshes[mesh_id]
            current_mesh.textures = TexturesVertex(
                verts_features=(current_mesh.verts_normals_padded() + 1.0) * 0.5
            )

            if type == "depth":
                fragments = self.meshRas(current_mesh.extend(len(self.cam_pos[cam_type])))
                images = fragments.zbuf[..., 0]

            elif type == "rgb":
                images = self.renderer(current_mesh.extend(len(self.cam_pos[cam_type])))
                images = (images[:, :, :, :3].permute(0, 3, 1, 2) - 0.5) * 2.0

            elif type == "mask":
                images = self.renderer(current_mesh.extend(len(self.cam_pos[cam_type])))[:, :, :, 3]
            else:
                print(f"unknown {type}")

            if cam_type == 'frontback':
                images[1] = torch.flip(images[1], dims=(-1, ))

            # images [N_render, 3, res, res]
            img_lst.append(images.unsqueeze(1))

        # meshes [N_render, N_mesh, 3, res, res]
        meshes = torch.cat(img_lst, dim=1)

        return list(meshes)

    def get_rendered_video_multi(self, data, save_path):

        height, width = data["img_raw"].shape[2:]

        width = int(width / (height / 256.0))
        height = int(256)

        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        video = cv2.VideoWriter(
            save_path,
            fourcc,
            self.fps,
            (width * 3, height),
        )

        pbar = tqdm(range(len(self.meshes)))
        print(colored(f"Normal Rendering {os.path.basename(save_path)}...", "blue"))

        mesh_renders = []    #[(N_cam, 3, res, res)*N_mesh]

        # render all the normals
        for mesh_id in pbar:

            current_mesh = self.meshes[mesh_id]
            current_mesh.textures = TexturesVertex(
                verts_features=(current_mesh.verts_normals_padded() + 1.0) * 0.5
            )

            norm_lst = []

            for batch_cams_idx in np.array_split(np.arange(len(self.cam_pos["around"])), 12):

                batch_cams = self.get_camera_batch(type='around', idx=batch_cams_idx)

                self.init_renderer(batch_cams, "mesh", "gray")

                norm_lst.append(
                    self.renderer(current_mesh.extend(len(batch_cams_idx))
                                 )[..., :3].permute(0, 3, 1, 2)
                )
            mesh_renders.append(torch.cat(norm_lst).detach().cpu())
            
        # generate video frame by frame
        pbar = tqdm(range(len(self.cam_pos["around"])))
        print(colored(f"Video Exporting {os.path.basename(save_path)}...", "blue"))

        for cam_id in pbar:
            img_raw = data["img_raw"]
            num_obj = len(mesh_renders) // 2
            img_smpl = blend_rgb_norm((torch.stack(mesh_renders)[:num_obj, cam_id] - 0.5) * 2.0,
                                      data)
            img_cloth = blend_rgb_norm((torch.stack(mesh_renders)[num_obj:, cam_id] - 0.5) * 2.0,
                                       data)
            final_img = torch.cat([img_raw, img_smpl, img_cloth], dim=-1)

            final_img_rescale = F.interpolate(
                final_img, size=(height, width*3), mode="bilinear", align_corners=False
            ).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8)

            video.write(final_img_rescale[:, :, ::-1])

        video.release()