File size: 6,903 Bytes
da48dbe
487ee6d
da48dbe
 
 
487ee6d
da48dbe
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
fb140f6
 
 
da48dbe
 
fb140f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
0718695
da48dbe
fb140f6
 
da48dbe
 
 
 
 
 
 
fb140f6
da48dbe
 
fb140f6
da48dbe
 
 
 
 
fb140f6
da48dbe
fb140f6
da48dbe
 
 
 
fb140f6
da48dbe
 
 
 
 
fb140f6
 
da48dbe
 
 
 
fb140f6
 
da48dbe
 
 
 
fb140f6
 
da48dbe
 
 
 
fb140f6
 
da48dbe
 
 
 
fb140f6
da48dbe
 
 
487ee6d
 
 
 
 
da48dbe
 
fb140f6
 
da48dbe
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from pickle import TRUE

import torch
import torch.nn as nn
import torch.nn.functional as F

from lib.net.geometry import orthogonal


class SelfAttention(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv = nn.Conv3d(in_channels, out_channels, 3, padding=1, padding_mode='replicate')
        self.attention = nn.Conv3d(
            in_channels,
            out_channels,
            kernel_size=3,
            padding=1,
            padding_mode='replicate',
            bias=False
        )
        with torch.no_grad():
            self.attention.weight.copy_(torch.zeros_like(self.attention.weight))

    def forward(self, x):
        features = self.conv(x)
        attention_mask = torch.sigmoid(self.attention(x))
        return features * attention_mask


class IFGeoNet(nn.Module):
    def __init__(self, cfg, hidden_dim=256):
        super(IFGeoNet, self).__init__()

        self.conv_in_partial = nn.Conv3d(
            1, 16, 3, padding=1, padding_mode='replicate'
        )    # out: 256 ->m.p. 128

        self.conv_in_smpl = nn.Conv3d(
            1, 4, 3, padding=1, padding_mode='replicate'
        )    # out: 256 ->m.p. 128

        self.SA = SelfAttention(4, 4)
        self.conv_0_fusion = nn.Conv3d(
            16 + 4, 32, 3, padding=1, padding_mode='replicate'
        )    # out: 128
        self.conv_0_1_fusion = nn.Conv3d(
            32, 32, 3, padding=1, padding_mode='replicate'
        )    # out: 128 ->m.p. 64

        self.conv_0 = nn.Conv3d(32, 32, 3, padding=1, padding_mode='replicate')    # out: 128
        self.conv_0_1 = nn.Conv3d(
            32, 32, 3, padding=1, padding_mode='replicate'
        )    # out: 128 ->m.p. 64

        self.conv_1 = nn.Conv3d(32, 64, 3, padding=1, padding_mode='replicate')    # out: 64
        self.conv_1_1 = nn.Conv3d(
            64, 64, 3, padding=1, padding_mode='replicate'
        )    # out: 64 -> mp 32

        self.conv_2 = nn.Conv3d(64, 128, 3, padding=1, padding_mode='replicate')    # out: 32
        self.conv_2_1 = nn.Conv3d(
            128, 128, 3, padding=1, padding_mode='replicate'
        )    # out: 32 -> mp 16
        self.conv_3 = nn.Conv3d(128, 128, 3, padding=1, padding_mode='replicate')    # out: 16
        self.conv_3_1 = nn.Conv3d(
            128, 128, 3, padding=1, padding_mode='replicate'
        )    # out: 16 -> mp 8
        self.conv_4 = nn.Conv3d(128, 128, 3, padding=1, padding_mode='replicate')    # out: 8
        self.conv_4_1 = nn.Conv3d(128, 128, 3, padding=1, padding_mode='replicate')    # out: 8

        feature_size = (1 + 32 + 32 + 64 + 128 + 128 + 128) + 3
        self.fc_0 = nn.Conv1d(feature_size, hidden_dim * 2, 1)
        self.fc_1 = nn.Conv1d(hidden_dim * 2, hidden_dim, 1)
        self.fc_2 = nn.Conv1d(hidden_dim, hidden_dim, 1)
        self.fc_out = nn.Conv1d(hidden_dim, 1, 1)
        self.actvn = nn.ReLU(True)

        self.maxpool = nn.MaxPool3d(2)

        self.partial_conv_in_bn = nn.InstanceNorm3d(16)
        self.smpl_conv_in_bn = nn.InstanceNorm3d(4)

        self.conv0_1_bn_fusion = nn.InstanceNorm3d(32)
        self.conv0_1_bn = nn.InstanceNorm3d(32)
        self.conv1_1_bn = nn.InstanceNorm3d(64)
        self.conv2_1_bn = nn.InstanceNorm3d(128)
        self.conv3_1_bn = nn.InstanceNorm3d(128)
        self.conv4_1_bn = nn.InstanceNorm3d(128)

        self.l1_loss = nn.SmoothL1Loss()

    def forward(self, batch):

        x_smpl = batch["body_voxels"]
        p = orthogonal(batch["samples_geo"].permute(0, 2, 1),
                       batch["calib"]).permute(0, 2, 1)    #[2, 60000, 3]
        x = batch["depth_voxels"]    #[B, 128, 128, 128]

        x = x.unsqueeze(1)
        x_smpl = x_smpl.unsqueeze(1)
        p_features = p.transpose(1, -1)
        p = p.unsqueeze(1).unsqueeze(1)

        # partial inputs feature extraction
        feature_0_partial = F.grid_sample(x, p, padding_mode='border', align_corners=True)
        net_partial = self.actvn(self.conv_in_partial(x))
        net_partial = self.partial_conv_in_bn(net_partial)
        net_partial = self.maxpool(net_partial)    # out 64

        # smpl inputs feature extraction
        # feature_0_smpl = F.grid_sample(x_smpl, p, padding_mode='border', align_corners = True)
        net_smpl = self.actvn(self.conv_in_smpl(x_smpl))
        net_smpl = self.smpl_conv_in_bn(net_smpl)
        net_smpl = self.maxpool(net_smpl)    # out 64
        net_smpl = self.SA(net_smpl)

        # Feature fusion
        net = self.actvn(self.conv_0_fusion(torch.concat([net_partial, net_smpl], dim=1)))
        net = self.actvn(self.conv_0_1_fusion(net))
        net = self.conv0_1_bn_fusion(net)
        feature_1_fused = F.grid_sample(net, p, padding_mode='border', align_corners=True)
        # net = self.maxpool(net)  # out 64

        net = self.actvn(self.conv_0(net))
        net = self.actvn(self.conv_0_1(net))
        net = self.conv0_1_bn(net)
        feature_2 = F.grid_sample(net, p, padding_mode='border', align_corners=True)
        net = self.maxpool(net)    # out 32

        net = self.actvn(self.conv_1(net))
        net = self.actvn(self.conv_1_1(net))
        net = self.conv1_1_bn(net)
        feature_3 = F.grid_sample(net, p, padding_mode='border', align_corners=True)
        net = self.maxpool(net)    # out 16

        net = self.actvn(self.conv_2(net))
        net = self.actvn(self.conv_2_1(net))
        net = self.conv2_1_bn(net)
        feature_4 = F.grid_sample(net, p, padding_mode='border', align_corners=True)
        net = self.maxpool(net)    # out 8

        net = self.actvn(self.conv_3(net))
        net = self.actvn(self.conv_3_1(net))
        net = self.conv3_1_bn(net)
        feature_5 = F.grid_sample(net, p, padding_mode='border', align_corners=True)
        net = self.maxpool(net)    # out 4

        net = self.actvn(self.conv_4(net))
        net = self.actvn(self.conv_4_1(net))
        net = self.conv4_1_bn(net)
        feature_6 = F.grid_sample(net, p, padding_mode='border', align_corners=True)    # out 2

        # here every channel corresponse to one feature.

        features = torch.cat((
            feature_0_partial, feature_1_fused, feature_2, feature_3, feature_4, feature_5,
            feature_6
        ),
                             dim=1)    # (B, features, 1,7,sample_num)
        shape = features.shape
        features = torch.reshape(
            features, (shape[0], shape[1] * shape[3], shape[4])
        )    # (B, featues_per_sample, samples_num)
        # (B, featue_size, samples_num)
        features = torch.cat((features, p_features), dim=1)

        net = self.actvn(self.fc_0(features))
        net = self.actvn(self.fc_1(net))
        net = self.actvn(self.fc_2(net))
        net = self.fc_out(net).squeeze(1)

        return net

    def compute_loss(self, prds, tgts):

        loss = self.l1_loss(prds, tgts)

        return loss