File size: 10,147 Bytes
da48dbe
 
487ee6d
 
da48dbe
487ee6d
 
da48dbe
 
 
 
 
 
 
 
487ee6d
 
da48dbe
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
fb140f6
da48dbe
 
fb140f6
 
 
da48dbe
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
fb140f6
da48dbe
fb140f6
da48dbe
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
fb140f6
da48dbe
fb140f6
da48dbe
 
 
fb140f6
 
da48dbe
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
da48dbe
fb140f6
da48dbe
 
 
 
 
fb140f6
 
 
da48dbe
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# This script is borrowed and extended from https://github.com/shunsukesaito/PIFu/blob/master/lib/model/SurfaceClassifier.py

import logging

import numpy as np
import scipy
import torch
import torch.nn as nn
import torch.nn.functional as F

from lib.pymafx.core import path_config
from lib.pymafx.utils.geometry import projection

logger = logging.getLogger(__name__)

from lib.pymafx.utils.imutils import j2d_processing

from .transformers.net_utils import PosEnSine
from .transformers.transformer_basics import OurMultiheadAttention


class TransformerDecoderUnit(nn.Module):
    def __init__(
        self, feat_dim, attri_dim=0, n_head=8, pos_en_flag=True, attn_type='softmax', P=None
    ):
        super(TransformerDecoderUnit, self).__init__()
        self.feat_dim = feat_dim
        self.attn_type = attn_type
        self.pos_en_flag = pos_en_flag
        self.P = P

        assert attri_dim == 0
        if self.pos_en_flag:
            pe_dim = 10
            self.pos_en = PosEnSine(pe_dim)
        else:
            pe_dim = 0
        self.attn = OurMultiheadAttention(
            feat_dim + attri_dim + pe_dim * 3, feat_dim + pe_dim * 3, feat_dim, n_head
        )    # cross-attention

        self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
        self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
        self.activation = nn.ReLU(inplace=True)

        self.norm = nn.BatchNorm2d(self.feat_dim)

    def forward(self, q, k, v, pos=None):
        if self.pos_en_flag:
            q_pos_embed = self.pos_en(q, pos)
            k_pos_embed = self.pos_en(k)

            q = torch.cat([q, q_pos_embed], dim=1)
            k = torch.cat([k, k_pos_embed], dim=1)
        # else:
        #     q_pos_embed = 0
        #     k_pos_embed = 0

        # cross-multi-head attention
        out = self.attn(q=q, k=k, v=v, attn_type=self.attn_type, P=self.P)[0]

        # feed forward
        out2 = self.linear2(self.activation(self.linear1(out)))
        out = out + out2
        out = self.norm(out)

        return out


class Mesh_Sampler(nn.Module):
    ''' Mesh Up/Down-sampling
    '''
    def __init__(self, type='smpl', level=2, device=torch.device('cuda'), option=None):
        super().__init__()

        # downsample SMPL mesh and assign part labels
        if type == 'smpl':
            # from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
            smpl_mesh_graph = np.load(
                path_config.SMPL_DOWNSAMPLING, allow_pickle=True, encoding='latin1'
            )

            A = smpl_mesh_graph['A']
            U = smpl_mesh_graph['U']
            D = smpl_mesh_graph['D']    # shape: (2,)
        elif type == 'mano':
            # from https://github.com/microsoft/MeshGraphormer/blob/main/src/modeling/data/mano_downsampling.npz
            mano_mesh_graph = np.load(
                path_config.MANO_DOWNSAMPLING, allow_pickle=True, encoding='latin1'
            )

            A = mano_mesh_graph['A']
            U = mano_mesh_graph['U']
            D = mano_mesh_graph['D']    # shape: (2,)

        # downsampling
        ptD = []
        for lv in range(len(D)):
            d = scipy.sparse.coo_matrix(D[lv])
            i = torch.LongTensor(np.array([d.row, d.col]))
            v = torch.FloatTensor(d.data)
            ptD.append(torch.sparse.FloatTensor(i, v, d.shape))

        # downsampling mapping from 6890 points to 431 points
        # ptD[0].to_dense() - Size: [1723, 6890] , [195, 778]
        # ptD[1].to_dense() - Size: [431, 1723] , [49, 195]
        if level == 2:
            Dmap = torch.matmul(ptD[1].to_dense(), ptD[0].to_dense())    # 6890 -> 431
        elif level == 1:
            Dmap = ptD[0].to_dense()    #
        self.register_buffer('Dmap', Dmap)

        # upsampling
        ptU = []
        for lv in range(len(U)):
            d = scipy.sparse.coo_matrix(U[lv])
            i = torch.LongTensor(np.array([d.row, d.col]))
            v = torch.FloatTensor(d.data)
            ptU.append(torch.sparse.FloatTensor(i, v, d.shape))

        # upsampling mapping from 431 points to 6890 points
        # ptU[0].to_dense() - Size: [6890, 1723]
        # ptU[1].to_dense() - Size: [1723, 431]
        if level == 2:
            Umap = torch.matmul(ptU[0].to_dense(), ptU[1].to_dense())    # 431 -> 6890
        elif level == 1:
            Umap = ptU[0].to_dense()    #
        self.register_buffer('Umap', Umap)

    def downsample(self, x):
        return torch.matmul(self.Dmap.unsqueeze(0), x)    # [B, 431, 3]

    def upsample(self, x):
        return torch.matmul(self.Umap.unsqueeze(0), x)    # [B, 6890, 3]

    def forward(self, x, mode='downsample'):
        if mode == 'downsample':
            return self.downsample(x)
        elif mode == 'upsample':
            return self.upsample(x)


class MAF_Extractor(nn.Module):
    ''' Mesh-aligned Feature Extrator
    As discussed in the paper, we extract mesh-aligned features based on 2D projection of the mesh vertices.
    The features extrated from spatial feature maps will go through a MLP for dimension reduction.
    '''
    def __init__(
        self, filter_channels, device=torch.device('cuda'), iwp_cam_mode=True, option=None
    ):
        super().__init__()

        self.device = device
        self.filters = []
        self.num_views = 1
        self.last_op = nn.ReLU(True)

        self.iwp_cam_mode = iwp_cam_mode

        for l in range(0, len(filter_channels) - 1):
            if 0 != l:
                self.filters.append(
                    nn.Conv1d(filter_channels[l] + filter_channels[0], filter_channels[l + 1], 1)
                )
            else:
                self.filters.append(nn.Conv1d(filter_channels[l], filter_channels[l + 1], 1))

            self.add_module("conv%d" % l, self.filters[l])

        # downsample SMPL mesh and assign part labels
        # from https://github.com/nkolot/GraphCMR/blob/master/data/mesh_downsampling.npz
        smpl_mesh_graph = np.load(
            path_config.SMPL_DOWNSAMPLING, allow_pickle=True, encoding='latin1'
        )

        A = smpl_mesh_graph['A']
        U = smpl_mesh_graph['U']
        D = smpl_mesh_graph['D']    # shape: (2,)

        # downsampling
        ptD = []
        for level in range(len(D)):
            d = scipy.sparse.coo_matrix(D[level])
            i = torch.LongTensor(np.array([d.row, d.col]))
            v = torch.FloatTensor(d.data)
            ptD.append(torch.sparse.FloatTensor(i, v, d.shape))

        # downsampling mapping from 6890 points to 431 points
        # ptD[0].to_dense() - Size: [1723, 6890]
        # ptD[1].to_dense() - Size: [431. 1723]
        Dmap = torch.matmul(ptD[1].to_dense(), ptD[0].to_dense())    # 6890 -> 431
        self.register_buffer('Dmap', Dmap)

        # upsampling
        ptU = []
        for level in range(len(U)):
            d = scipy.sparse.coo_matrix(U[level])
            i = torch.LongTensor(np.array([d.row, d.col]))
            v = torch.FloatTensor(d.data)
            ptU.append(torch.sparse.FloatTensor(i, v, d.shape))

        # upsampling mapping from 431 points to 6890 points
        # ptU[0].to_dense() - Size: [6890, 1723]
        # ptU[1].to_dense() - Size: [1723, 431]
        Umap = torch.matmul(ptU[0].to_dense(), ptU[1].to_dense())    # 431 -> 6890
        self.register_buffer('Umap', Umap)

    def reduce_dim(self, feature):
        '''
        Dimension reduction by multi-layer perceptrons
        :param feature: list of [B, C_s, N] point-wise features before dimension reduction
        :return: [B, C_p x N] concatantion of point-wise features after dimension reduction
        '''
        y = feature
        tmpy = feature
        for i, f in enumerate(self.filters):
            y = self._modules['conv' + str(i)](y if i == 0 else torch.cat([y, tmpy], 1))
            if i != len(self.filters) - 1:
                y = F.leaky_relu(y)
            if self.num_views > 1 and i == len(self.filters) // 2:
                y = y.view(-1, self.num_views, y.shape[1], y.shape[2]).mean(dim=1)
                tmpy = feature.view(-1, self.num_views, feature.shape[1],
                                    feature.shape[2]).mean(dim=1)

        y = self.last_op(y)

        # y = y.view(y.shape[0], -1)

        return y

    def sampling(self, points, im_feat=None, z_feat=None, add_att=False, reduce_dim=True):
        '''
        Given 2D points, sample the point-wise features for each point, 
        the dimension of point-wise features will be reduced from C_s to C_p by MLP.
        Image features should be pre-computed before this call.
        :param points: [B, N, 2] image coordinates of points
        :im_feat: [B, C_s, H_s, W_s] spatial feature maps 
        :return: [B, C_p x N] concatantion of point-wise features after dimension reduction
        '''
        # if im_feat is None:
        #     im_feat = self.im_feat

        batch_size = im_feat.shape[0]
        point_feat = torch.nn.functional.grid_sample(
            im_feat, points.unsqueeze(2), align_corners=False
        )[..., 0]

        if reduce_dim:
            mesh_align_feat = self.reduce_dim(point_feat)
            return mesh_align_feat
        else:
            return point_feat

    def forward(self, p, im_feat, cam=None, add_att=False, reduce_dim=True, **kwargs):
        ''' Returns mesh-aligned features for the 3D mesh points.
        Args:
            p (tensor): [B, N_m, 3] mesh vertices
            im_feat (tensor): [B, C_s, H_s, W_s] spatial feature maps
            cam (tensor): [B, 3] camera
        Return:
            mesh_align_feat (tensor): [B, C_p x N_m] mesh-aligned features
        '''
        # if cam is None:
        #     cam = self.cam
        p_proj_2d = projection(p, cam, retain_z=False, iwp_mode=self.iwp_cam_mode)
        if self.iwp_cam_mode:
            # Normalize keypoints to [-1,1]
            p_proj_2d = p_proj_2d / (224. / 2.)
        else:
            p_proj_2d = j2d_processing(p_proj_2d, cam['kps_transf'])
        mesh_align_feat = self.sampling(p_proj_2d, im_feat, add_att=add_att, reduce_dim=reduce_dim)
        return mesh_align_feat