Spaces:
Runtime error
Runtime error
File size: 5,752 Bytes
da48dbe 487ee6d da48dbe 487ee6d da48dbe 487ee6d da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe fb140f6 da48dbe 487ee6d da48dbe fb140f6 da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
import cv2
import numpy as np
import scipy.spatial.distance
from scipy.io import loadmat
class DensePoseMethods:
def __init__(self):
#
ALP_UV = loadmat(os.path.join('./data/UV_data', 'UV_Processed.mat'))
self.FaceIndices = np.array(ALP_UV['All_FaceIndices']).squeeze()
self.FacesDensePose = ALP_UV['All_Faces'] - 1
self.U_norm = ALP_UV['All_U_norm'].squeeze()
self.V_norm = ALP_UV['All_V_norm'].squeeze()
self.All_vertices = ALP_UV['All_vertices'][0]
## Info to compute symmetries.
self.SemanticMaskSymmetries = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14]
self.Index_Symmetry_List = [
1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23
]
UV_symmetry_filename = os.path.join('./data/UV_data', 'UV_symmetry_transforms.mat')
self.UV_symmetry_transformations = loadmat(UV_symmetry_filename)
def get_symmetric_densepose(self, I, U, V, x, y, Mask):
### This is a function to get the mirror symmetric UV labels.
Labels_sym = np.zeros(I.shape)
U_sym = np.zeros(U.shape)
V_sym = np.zeros(V.shape)
###
for i in (range(24)):
if i + 1 in I:
Labels_sym[I == (i + 1)] = self.Index_Symmetry_List[i]
jj = np.where(I == (i + 1))
###
U_loc = (U[jj] * 255).astype(np.int64)
V_loc = (V[jj] * 255).astype(np.int64)
###
V_sym[jj] = self.UV_symmetry_transformations['V_transforms'][0, i][V_loc, U_loc]
U_sym[jj] = self.UV_symmetry_transformations['U_transforms'][0, i][V_loc, U_loc]
##
Mask_flip = np.fliplr(Mask)
Mask_flipped = np.zeros(Mask.shape)
#
for i in (range(14)):
Mask_flipped[Mask_flip == (i + 1)] = self.SemanticMaskSymmetries[i + 1]
#
[y_max, x_max] = Mask_flip.shape
y_sym = y
x_sym = x_max - x
#
return Labels_sym, U_sym, V_sym, x_sym, y_sym, Mask_flipped
def barycentric_coordinates_exists(self, P0, P1, P2, P):
u = P1 - P0
v = P2 - P0
w = P - P0
#
vCrossW = np.cross(v, w)
vCrossU = np.cross(v, u)
if (np.dot(vCrossW, vCrossU) < 0):
return False
#
uCrossW = np.cross(u, w)
uCrossV = np.cross(u, v)
#
if (np.dot(uCrossW, uCrossV) < 0):
return False
#
denom = np.sqrt((uCrossV**2).sum())
r = np.sqrt((vCrossW**2).sum()) / denom
t = np.sqrt((uCrossW**2).sum()) / denom
#
return ((r <= 1) & (t <= 1) & (r + t <= 1))
def barycentric_coordinates(self, P0, P1, P2, P):
u = P1 - P0
v = P2 - P0
w = P - P0
#
vCrossW = np.cross(v, w)
vCrossU = np.cross(v, u)
#
uCrossW = np.cross(u, w)
uCrossV = np.cross(u, v)
#
denom = np.sqrt((uCrossV**2).sum())
r = np.sqrt((vCrossW**2).sum()) / denom
t = np.sqrt((uCrossW**2).sum()) / denom
#
return (1 - (r + t), r, t)
def IUV2FBC(self, I_point, U_point, V_point):
P = [U_point, V_point, 0]
FaceIndicesNow = np.where(self.FaceIndices == I_point)
FacesNow = self.FacesDensePose[FaceIndicesNow]
#
P_0 = np.vstack((
self.U_norm[FacesNow][:, 0], self.V_norm[FacesNow][:, 0],
np.zeros(self.U_norm[FacesNow][:, 0].shape)
)).transpose()
P_1 = np.vstack((
self.U_norm[FacesNow][:, 1], self.V_norm[FacesNow][:, 1],
np.zeros(self.U_norm[FacesNow][:, 1].shape)
)).transpose()
P_2 = np.vstack((
self.U_norm[FacesNow][:, 2], self.V_norm[FacesNow][:, 2],
np.zeros(self.U_norm[FacesNow][:, 2].shape)
)).transpose()
#
for i, [P0, P1, P2] in enumerate(zip(P_0, P_1, P_2)):
if (self.barycentric_coordinates_exists(P0, P1, P2, P)):
[bc1, bc2, bc3] = self.barycentric_coordinates(P0, P1, P2, P)
return (FaceIndicesNow[0][i], bc1, bc2, bc3)
#
# If the found UV is not inside any faces, select the vertex that is closest!
#
D1 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :],
P_0[:, 0:2]).squeeze()
D2 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :],
P_1[:, 0:2]).squeeze()
D3 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :],
P_2[:, 0:2]).squeeze()
#
minD1 = D1.min()
minD2 = D2.min()
minD3 = D3.min()
#
if ((minD1 < minD2) & (minD1 < minD3)):
return (FaceIndicesNow[0][np.argmin(D1)], 1., 0., 0.)
elif ((minD2 < minD1) & (minD2 < minD3)):
return (FaceIndicesNow[0][np.argmin(D2)], 0., 1., 0.)
else:
return (FaceIndicesNow[0][np.argmin(D3)], 0., 0., 1.)
def FBC2PointOnSurface(self, FaceIndex, bc1, bc2, bc3, Vertices):
##
Vert_indices = self.All_vertices[self.FacesDensePose[FaceIndex]] - 1
##
p = Vertices[Vert_indices[0], :] * bc1 + \
Vertices[Vert_indices[1], :] * bc2 + \
Vertices[Vert_indices[2], :] * bc3
##
return (p)
|