File size: 15,833 Bytes
da48dbe
 
487ee6d
da48dbe
487ee6d
da48dbe
487ee6d
 
da48dbe
 
 
487ee6d
da48dbe
 
487ee6d
da48dbe
fb140f6
da48dbe
 
 
fb140f6
da48dbe
 
fb140f6
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
da48dbe
fb140f6
 
 
 
 
 
 
 
 
da48dbe
fb140f6
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
487ee6d
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
da48dbe
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
fb140f6
 
 
da48dbe
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
da48dbe
 
 
 
 
fb140f6
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb140f6
 
 
 
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# code brought in part from https://github.com/microsoft/human-pose-estimation.pytorch/blob/master/lib/models/pose_resnet.py

from __future__ import absolute_import, division, print_function

import logging
import os
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F

from lib.pymafx.core.cfgs import cfg

# from .transformers.tokenlearner import TokenLearner

logger = logging.getLogger(__name__)

BN_MOMENTUM = 0.1


def conv3x3(in_planes, out_planes, stride=1, bias=False, groups=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(
        in_planes * groups,
        out_planes * groups,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=bias,
        groups=groups
    )


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1):
        super().__init__()
        self.conv1 = conv3x3(inplanes, planes, stride, groups=groups)
        self.bn1 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes, groups=groups)
        self.bn2 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1):
        super().__init__()
        self.conv1 = nn.Conv2d(
            inplanes * groups, planes * groups, kernel_size=1, bias=False, groups=groups
        )
        self.bn1 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM)
        self.conv2 = nn.Conv2d(
            planes * groups,
            planes * groups,
            kernel_size=3,
            stride=stride,
            padding=1,
            bias=False,
            groups=groups
        )
        self.bn2 = nn.BatchNorm2d(planes * groups, momentum=BN_MOMENTUM)
        self.conv3 = nn.Conv2d(
            planes * groups,
            planes * self.expansion * groups,
            kernel_size=1,
            bias=False,
            groups=groups
        )
        self.bn3 = nn.BatchNorm2d(planes * self.expansion * groups, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


resnet_spec = {
    18: (BasicBlock, [2, 2, 2, 2]), 34: (BasicBlock, [3, 4, 6, 3]), 50: (Bottleneck, [3, 4, 6, 3]),
    101: (Bottleneck, [3, 4, 23, 3]), 152: (Bottleneck, [3, 8, 36, 3])
}


class IUV_predict_layer(nn.Module):
    def __init__(self, feat_dim=256, final_cov_k=3, out_channels=25, with_uv=True, mode='iuv'):
        super().__init__()

        assert mode in ['iuv', 'seg', 'pncc']
        self.mode = mode

        if mode == 'seg':
            self.predict_ann_index = nn.Conv2d(
                in_channels=feat_dim,
                out_channels=15,
                kernel_size=final_cov_k,
                stride=1,
                padding=1 if final_cov_k == 3 else 0
            )

            self.predict_uv_index = nn.Conv2d(
                in_channels=feat_dim,
                out_channels=25,
                kernel_size=final_cov_k,
                stride=1,
                padding=1 if final_cov_k == 3 else 0
            )
        elif mode == 'iuv':
            self.predict_u = nn.Conv2d(
                in_channels=feat_dim,
                out_channels=25,
                kernel_size=final_cov_k,
                stride=1,
                padding=1 if final_cov_k == 3 else 0
            )

            self.predict_v = nn.Conv2d(
                in_channels=feat_dim,
                out_channels=25,
                kernel_size=final_cov_k,
                stride=1,
                padding=1 if final_cov_k == 3 else 0
            )

            self.predict_ann_index = nn.Conv2d(
                in_channels=feat_dim,
                out_channels=15,
                kernel_size=final_cov_k,
                stride=1,
                padding=1 if final_cov_k == 3 else 0
            )

            self.predict_uv_index = nn.Conv2d(
                in_channels=feat_dim,
                out_channels=25,
                kernel_size=final_cov_k,
                stride=1,
                padding=1 if final_cov_k == 3 else 0
            )
        elif mode in ['pncc']:
            self.predict_pncc = nn.Conv2d(
                in_channels=feat_dim,
                out_channels=3,
                kernel_size=final_cov_k,
                stride=1,
                padding=1 if final_cov_k == 3 else 0
            )

        self.inplanes = feat_dim

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(
                    self.inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias=False
                ),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        return_dict = {}

        if self.mode in ['iuv', 'seg']:
            predict_uv_index = self.predict_uv_index(x)
            predict_ann_index = self.predict_ann_index(x)

            return_dict['predict_uv_index'] = predict_uv_index
            return_dict['predict_ann_index'] = predict_ann_index

            if self.mode == 'iuv':
                predict_u = self.predict_u(x)
                predict_v = self.predict_v(x)
                return_dict['predict_u'] = predict_u
                return_dict['predict_v'] = predict_v
            else:
                return_dict['predict_u'] = None
                return_dict['predict_v'] = None
                # return_dict['predict_u'] = torch.zeros(predict_uv_index.shape).to(predict_uv_index.device)
                # return_dict['predict_v'] = torch.zeros(predict_uv_index.shape).to(predict_uv_index.device)

        if self.mode == 'pncc':
            predict_pncc = self.predict_pncc(x)
            return_dict['predict_pncc'] = predict_pncc

        return return_dict


class Seg_predict_layer(nn.Module):
    def __init__(self, feat_dim=256, final_cov_k=3, out_channels=25):
        super().__init__()

        self.predict_seg_index = nn.Conv2d(
            in_channels=feat_dim,
            out_channels=out_channels,
            kernel_size=final_cov_k,
            stride=1,
            padding=1 if final_cov_k == 3 else 0
        )

        self.inplanes = feat_dim

    def forward(self, x):
        return_dict = {}

        predict_seg_index = self.predict_seg_index(x)
        return_dict['predict_seg_index'] = predict_seg_index

        return return_dict


class Kps_predict_layer(nn.Module):
    def __init__(self, feat_dim=256, final_cov_k=3, out_channels=3, add_module=None):
        super().__init__()

        if add_module is not None:
            conv = nn.Conv2d(
                in_channels=feat_dim,
                out_channels=out_channels,
                kernel_size=final_cov_k,
                stride=1,
                padding=1 if final_cov_k == 3 else 0
            )
            self.predict_kps = nn.Sequential(
                add_module,
            #  nn.BatchNorm2d(feat_dim, momentum=BN_MOMENTUM),
            #  conv,
            )
        else:
            self.predict_kps = nn.Conv2d(
                in_channels=feat_dim,
                out_channels=out_channels,
                kernel_size=final_cov_k,
                stride=1,
                padding=1 if final_cov_k == 3 else 0
            )

        self.inplanes = feat_dim

    def forward(self, x):
        return_dict = {}

        predict_kps = self.predict_kps(x)
        return_dict['predict_kps'] = predict_kps

        return return_dict


class SmplResNet(nn.Module):
    def __init__(
        self,
        resnet_nums,
        in_channels=3,
        num_classes=229,
        last_stride=2,
        n_extra_feat=0,
        truncate=0,
        **kwargs
    ):
        super().__init__()

        self.inplanes = 64
        self.truncate = truncate
        # extra = cfg.MODEL.EXTRA
        # self.deconv_with_bias = extra.DECONV_WITH_BIAS
        block, layers = resnet_spec[resnet_nums]

        self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2) if truncate < 2 else None
        self.layer4 = self._make_layer(
            block, 512, layers[3], stride=last_stride
        ) if truncate < 1 else None

        self.avg_pooling = nn.AdaptiveAvgPool2d(1)

        self.num_classes = num_classes
        if num_classes > 0:
            self.final_layer = nn.Linear(512 * block.expansion, num_classes)
            nn.init.xavier_uniform_(self.final_layer.weight, gain=0.01)

        self.n_extra_feat = n_extra_feat
        if n_extra_feat > 0:
            self.trans_conv = nn.Sequential(
                nn.Conv2d(
                    n_extra_feat + 512 * block.expansion,
                    512 * block.expansion,
                    kernel_size=1,
                    bias=False
                ), nn.BatchNorm2d(512 * block.expansion, momentum=BN_MOMENTUM), nn.ReLU(True)
            )

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(
                    self.inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    bias=False
                ),
                nn.BatchNorm2d(planes * block.expansion, momentum=BN_MOMENTUM),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x, infeat=None):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x1 = self.layer1(x)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2) if self.truncate < 2 else x2
        x4 = self.layer4(x3) if self.truncate < 1 else x3

        if infeat is not None:
            x4 = self.trans_conv(torch.cat([infeat, x4], 1))

        if self.num_classes > 0:
            xp = self.avg_pooling(x4)
            cls = self.final_layer(xp.view(xp.size(0), -1))
            if not cfg.DANET.USE_MEAN_PARA:
                # for non-negative scale
                scale = F.relu(cls[:, 0]).unsqueeze(1)
                cls = torch.cat((scale, cls[:, 1:]), dim=1)
        else:
            cls = None

        return cls, {'x4': x4}

    def init_weights(self, pretrained=''):
        if os.path.isfile(pretrained):
            logger.info('=> loading pretrained model {}'.format(pretrained))
            # self.load_state_dict(pretrained_state_dict, strict=False)
            checkpoint = torch.load(pretrained)
            if isinstance(checkpoint, OrderedDict):
                # state_dict = checkpoint
                state_dict_old = self.state_dict()
                for key in state_dict_old.keys():
                    if key in checkpoint.keys():
                        if state_dict_old[key].shape != checkpoint[key].shape:
                            del checkpoint[key]
                state_dict = checkpoint
            elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
                state_dict_old = checkpoint['state_dict']
                state_dict = OrderedDict()
                # delete 'module.' because it is saved from DataParallel module
                for key in state_dict_old.keys():
                    if key.startswith('module.'):
                        # state_dict[key[7:]] = state_dict[key]
                        # state_dict.pop(key)
                        state_dict[key[7:]] = state_dict_old[key]
                    else:
                        state_dict[key] = state_dict_old[key]
            else:
                raise RuntimeError('No state_dict found in checkpoint file {}'.format(pretrained))
            self.load_state_dict(state_dict, strict=False)
        else:
            logger.error('=> imagenet pretrained model dose not exist')
            logger.error('=> please download it first')
            raise ValueError('imagenet pretrained model does not exist')


class LimbResLayers(nn.Module):
    def __init__(self, resnet_nums, inplanes, outplanes=None, groups=1, **kwargs):
        super().__init__()

        self.inplanes = inplanes
        block, layers = resnet_spec[resnet_nums]
        self.outplanes = 256 if outplanes == None else outplanes
        self.layer3 = self._make_layer(block, self.outplanes, layers[2], stride=2, groups=groups)
        # self.outplanes = 512 if outplanes == None else outplanes
        # self.layer4 = self._make_layer(block, self.outplanes, layers[3], stride=2, groups=groups)

        self.avg_pooling = nn.AdaptiveAvgPool2d(1)

        # self.tklr = TokenLearner(S=n_token)

    def _make_layer(self, block, planes, blocks, stride=1, groups=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(
                    self.inplanes * groups,
                    planes * block.expansion * groups,
                    kernel_size=1,
                    stride=stride,
                    bias=False,
                    groups=groups
                ),
                nn.BatchNorm2d(planes * block.expansion * groups, momentum=BN_MOMENTUM),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, groups=groups))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, groups=groups))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.layer3(x)
        # x = self.layer4(x)
        # x = self.avg_pooling(x)
        # x_g = self.tklr(x.permute(0, 2, 3, 1).contiguous())
        # x_g = x_g.reshape(x.shape[0], -1)

        return x, None