Spaces:
Runtime error
Runtime error
File size: 23,473 Bytes
da48dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
import torch
from torch.nn import functional as F
import numpy as np
import numbers
from einops.einops import rearrange
"""
Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula
Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR
"""
def batch_rodrigues(theta):
"""Convert axis-angle representation to rotation matrix.
Args:
theta: size = [B, 3]
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim=1)
return quat_to_rotmat(quat)
def quat_to_rotmat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2,
2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2
],
dim=1).view(B, 3, 3)
return rotMat
def rotation_matrix_to_angle_axis(rotation_matrix):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to Rodrigues vector
Args:
rotation_matrix (Tensor): rotation matrix.
Returns:
Tensor: Rodrigues vector transformation.
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 3)`
Example:
>>> input = torch.rand(2, 3, 4) # Nx4x4
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
"""
if rotation_matrix.shape[1:] == (3, 3):
rot_mat = rotation_matrix.reshape(-1, 3, 3)
hom = torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device).reshape(
1, 3, 1).expand(rot_mat.shape[0], -1, -1)
rotation_matrix = torch.cat([rot_mat, hom], dim=-1)
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
aa = quaternion_to_angle_axis(quaternion)
aa[torch.isnan(aa)] = 0.0
return aa
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
"""
This function is borrowed from https://github.com/kornia/kornia
Convert quaternion vector to angle axis of rotation.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}".format(
quaternion.shape))
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(cos_theta < 0.0, torch.atan2(
-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta))
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
def quaternion_to_angle(quaternion: torch.Tensor) -> torch.Tensor:
"""
Convert quaternion vector to angle of the rotation.
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 1)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle(quaternion) # Nx1
"""
if not torch.is_tensor(quaternion):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}".format(
quaternion.shape))
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
theta: torch.Tensor = 2.0 * torch.where(cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta),
torch.atan2(sin_theta, cos_theta))
# theta: torch.Tensor = 2.0 * torch.atan2(sin_theta, cos_theta)
# theta2 = torch.where(sin_squared_theta > 0.0, - theta, theta)
return theta.unsqueeze(-1)
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(rotation_matrix)))
if len(rotation_matrix.shape) > 3:
raise ValueError("Input size must be a three dimensional tensor. Got {}".format(
rotation_matrix.shape))
# if not rotation_matrix.shape[-2:] == (3, 4):
# raise ValueError(
# "Input size must be a N x 3 x 4 tensor. Got {}".format(
# rotation_matrix.shape))
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack([
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2]
], -1)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack([
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1,
rmat_t[:, 1, 2] + rmat_t[:, 2, 1]
], -1)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack([
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2
], -1)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack([
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] - rmat_t[:, 1, 0]
], -1)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1
mask_c1 = mask_d2 * ~mask_d0_d1
mask_c2 = ~mask_d2 * mask_d0_nd1
mask_c3 = ~mask_d2 * ~mask_d0_nd1
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa
q *= 0.5
return q
def batch_euler2matrix(r):
return quaternion_to_rotation_matrix(euler_to_quaternion(r))
def euler_to_quaternion(r):
x = r[..., 0]
y = r[..., 1]
z = r[..., 2]
z = z / 2.0
y = y / 2.0
x = x / 2.0
cz = torch.cos(z)
sz = torch.sin(z)
cy = torch.cos(y)
sy = torch.sin(y)
cx = torch.cos(x)
sx = torch.sin(x)
quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device)
quaternion[..., 0] += cx * cy * cz - sx * sy * sz
quaternion[..., 1] += cx * sy * sz + cy * cz * sx
quaternion[..., 2] += cx * cz * sy - sx * cy * sz
quaternion[..., 3] += cx * cy * sz + sx * cz * sy
return quaternion
def quaternion_to_rotation_matrix(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2,
2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2
],
dim=1).view(B, 3, 3)
return rotMat
def rot6d_to_rotmat(x):
"""Convert 6D rotation representation to 3x3 rotation matrix.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Input:
(B,6) Batch of 6-D rotation representations
Output:
(B,3,3) Batch of corresponding rotation matrices
"""
if x.shape[-1] == 6:
batch_size = x.shape[0]
if len(x.shape) == 3:
num = x.shape[1]
x = rearrange(x, 'b n d -> (b n) d', d=6)
else:
num = 1
x = rearrange(x, 'b (k l) -> b k l', k=3, l=2)
# x = x.view(-1,3,2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
b3 = torch.cross(b1, b2, dim=-1)
mat = torch.stack((b1, b2, b3), dim=-1)
if num > 1:
mat = rearrange(mat, '(b n) h w-> b n h w', b=batch_size, n=num, h=3, w=3)
else:
x = x.view(-1, 3, 2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
b3 = torch.cross(b1, b2, dim=-1)
mat = torch.stack((b1, b2, b3), dim=-1)
return mat
def rotmat_to_rot6d(x):
"""Convert 3x3 rotation matrix to 6D rotation representation.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Input:
(B,3,3) Batch of corresponding rotation matrices
Output:
(B,6) Batch of 6-D rotation representations
"""
batch_size = x.shape[0]
x = x[:, :, :2]
x = x.reshape(batch_size, 6)
return x
def rotmat_to_angle(x):
"""Convert rotation to one-D angle.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Input:
(B,2) Batch of corresponding rotation
Output:
(B,1) Batch of 1-D angle
"""
a = F.normalize(x)
angle = torch.atan2(a[:, 0], a[:, 1]).unsqueeze(-1)
return angle
def projection(pred_joints, pred_camera, retain_z=False, iwp_mode=True):
""" Project 3D points on the image plane based on the given camera info,
Identity rotation and Weak Perspective (IWP) camera is used when iwp_mode=True, more about camera settings:
SPEC: Seeing People in the Wild with an Estimated Camera, ICCV 2021
"""
batch_size = pred_joints.shape[0]
if iwp_mode:
cam_sxy = pred_camera['cam_sxy']
pred_cam_t = torch.stack(
[cam_sxy[:, 1], cam_sxy[:, 2], 2 * 5000. / (224. * cam_sxy[:, 0] + 1e-9)], dim=-1)
camera_center = torch.zeros(batch_size, 2)
pred_keypoints_2d = perspective_projection(pred_joints,
rotation=torch.eye(3).unsqueeze(0).expand(
batch_size, -1, -1).to(pred_joints.device),
translation=pred_cam_t,
focal_length=5000.,
camera_center=camera_center,
retain_z=retain_z)
# # Normalize keypoints to [-1,1]
# pred_keypoints_2d = pred_keypoints_2d / (224. / 2.)
else:
assert type(pred_camera) is dict
bbox_scale, bbox_center = pred_camera['bbox_scale'], pred_camera['bbox_center']
img_w, img_h, crop_res = pred_camera['img_w'], pred_camera['img_h'], pred_camera['crop_res']
cam_sxy, cam_rotmat, cam_intrinsics = pred_camera['cam_sxy'], pred_camera[
'cam_rotmat'], pred_camera['cam_intrinsics']
if 'cam_t' in pred_camera:
cam_t = pred_camera['cam_t']
else:
cam_t = convert_to_full_img_cam(
pare_cam=cam_sxy,
bbox_height=bbox_scale * 200.,
bbox_center=bbox_center,
img_w=img_w,
img_h=img_h,
focal_length=cam_intrinsics[:, 0, 0],
)
pred_keypoints_2d = perspective_projection(
pred_joints,
rotation=cam_rotmat,
translation=cam_t,
cam_intrinsics=cam_intrinsics,
)
return pred_keypoints_2d
def perspective_projection(points,
rotation,
translation,
focal_length=None,
camera_center=None,
cam_intrinsics=None,
retain_z=False):
"""
This function computes the perspective projection of a set of points.
Input:
points (bs, N, 3): 3D points
rotation (bs, 3, 3): Camera rotation
translation (bs, 3): Camera translation
focal_length (bs,) or scalar: Focal length
camera_center (bs, 2): Camera center
"""
batch_size = points.shape[0]
if cam_intrinsics is not None:
K = cam_intrinsics
else:
# raise
K = torch.zeros([batch_size, 3, 3], device=points.device)
K[:, 0, 0] = focal_length
K[:, 1, 1] = focal_length
K[:, 2, 2] = 1.
K[:, :-1, -1] = camera_center
# Transform points
points = torch.einsum('bij,bkj->bki', rotation, points)
points = points + translation.unsqueeze(1)
# Apply perspective distortion
projected_points = points / points[:, :, -1].unsqueeze(-1)
# Apply camera intrinsics
projected_points = torch.einsum('bij,bkj->bki', K, projected_points)
if retain_z:
return projected_points
else:
return projected_points[:, :, :-1]
def convert_to_full_img_cam(pare_cam, bbox_height, bbox_center, img_w, img_h, focal_length):
# Converts weak perspective camera estimated by PARE in
# bbox coords to perspective camera in full image coordinates
# from https://arxiv.org/pdf/2009.06549.pdf
s, tx, ty = pare_cam[:, 0], pare_cam[:, 1], pare_cam[:, 2]
res = 224
r = bbox_height / res
tz = 2 * focal_length / (r * res * s)
cx = 2 * (bbox_center[:, 0] - (img_w / 2.)) / (s * bbox_height)
cy = 2 * (bbox_center[:, 1] - (img_h / 2.)) / (s * bbox_height)
if torch.is_tensor(pare_cam):
cam_t = torch.stack([tx + cx, ty + cy, tz], dim=-1)
else:
cam_t = np.stack([tx + cx, ty + cy, tz], axis=-1)
return cam_t
def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000, img_size=(224., 224.)):
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (25, 3) 3D joint locations
joints: (25, 3) 2D joint locations and confidence
Returns:
(3,) camera translation vector
"""
num_joints = S.shape[0]
# focal length
f = np.array([focal_length, focal_length])
# optical center
center = np.array([img_size[1] / 2., img_size[0] / 2.])
# transformations
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1)
XY = np.reshape(S[:, 0:2], -1)
O = np.tile(center, num_joints)
F = np.tile(f, num_joints)
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1)
# least squares
Q = np.array([
F * np.tile(np.array([1, 0]), num_joints), F * np.tile(np.array([0, 1]), num_joints),
O - np.reshape(joints_2d, -1)
]).T
c = (np.reshape(joints_2d, -1) - O) * Z - F * XY
# weighted least squares
W = np.diagflat(weight2)
Q = np.dot(W, Q)
c = np.dot(W, c)
# square matrix
A = np.dot(Q.T, Q)
b = np.dot(Q.T, c)
# solution
trans = np.linalg.solve(A, b)
return trans
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224., use_all_kps=False):
"""Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d.
Input:
S: (B, 49, 3) 3D joint locations
joints: (B, 49, 3) 2D joint locations and confidence
Returns:
(B, 3) camera translation vectors
"""
if isinstance(focal_length, numbers.Number):
focal_length = [
focal_length,
] * S.shape[0]
# print(len(focal_length), focal_length)
if isinstance(img_size, numbers.Number):
img_size = [
(img_size, img_size),
] * S.shape[0]
# print(len(img_size), img_size)
device = S.device
if use_all_kps:
S = S.cpu().numpy()
joints_2d = joints_2d.cpu().numpy()
else:
# Use only joints 25:49 (GT joints)
S = S[:, 25:, :].cpu().numpy()
joints_2d = joints_2d[:, 25:, :].cpu().numpy()
joints_conf = joints_2d[:, :, -1]
joints_2d = joints_2d[:, :, :-1]
trans = np.zeros((S.shape[0], 3), dtype=np.float32)
# Find the translation for each example in the batch
for i in range(S.shape[0]):
S_i = S[i]
joints_i = joints_2d[i]
conf_i = joints_conf[i]
trans[i] = estimate_translation_np(S_i,
joints_i,
conf_i,
focal_length=focal_length[i],
img_size=img_size[i])
return torch.from_numpy(trans).to(device)
def Rot_y(angle, category='torch', prepend_dim=True, device=None):
'''Rotate around y-axis by angle
Args:
category: 'torch' or 'numpy'
prepend_dim: prepend an extra dimension
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
'''
m = np.array([[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.],
[-np.sin(angle), 0., np.cos(angle)]])
if category == 'torch':
if prepend_dim:
return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0)
else:
return torch.tensor(m, dtype=torch.float, device=device)
elif category == 'numpy':
if prepend_dim:
return np.expand_dims(m, 0)
else:
return m
else:
raise ValueError("category must be 'torch' or 'numpy'")
def Rot_x(angle, category='torch', prepend_dim=True, device=None):
'''Rotate around x-axis by angle
Args:
category: 'torch' or 'numpy'
prepend_dim: prepend an extra dimension
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
'''
m = np.array([[1., 0., 0.], [0., np.cos(angle), -np.sin(angle)],
[0., np.sin(angle), np.cos(angle)]])
if category == 'torch':
if prepend_dim:
return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0)
else:
return torch.tensor(m, dtype=torch.float, device=device)
elif category == 'numpy':
if prepend_dim:
return np.expand_dims(m, 0)
else:
return m
else:
raise ValueError("category must be 'torch' or 'numpy'")
def Rot_z(angle, category='torch', prepend_dim=True, device=None):
'''Rotate around z-axis by angle
Args:
category: 'torch' or 'numpy'
prepend_dim: prepend an extra dimension
Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
'''
m = np.array([[np.cos(angle), -np.sin(angle), 0.], [np.sin(angle),
np.cos(angle), 0.], [0., 0., 1.]])
if category == 'torch':
if prepend_dim:
return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0)
else:
return torch.tensor(m, dtype=torch.float, device=device)
elif category == 'numpy':
if prepend_dim:
return np.expand_dims(m, 0)
else:
return m
else:
raise ValueError("category must be 'torch' or 'numpy'")
def compute_twist_rotation(rotation_matrix, twist_axis):
'''
Compute the twist component of given rotation and twist axis
https://stackoverflow.com/questions/3684269/component-of-a-quaternion-rotation-around-an-axis
Parameters
----------
rotation_matrix : Tensor (B, 3, 3,)
The rotation to convert
twist_axis : Tensor (B, 3,)
The twist axis
Returns
-------
Tensor (B, 3, 3)
The twist rotation
'''
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
twist_axis = twist_axis / (torch.norm(twist_axis, dim=1, keepdim=True) + 1e-9)
projection = torch.einsum('bi,bi->b', twist_axis, quaternion[:, 1:]).unsqueeze(-1) * twist_axis
twist_quaternion = torch.cat([quaternion[:, 0:1], projection], dim=1)
twist_quaternion = twist_quaternion / (torch.norm(twist_quaternion, dim=1, keepdim=True) + 1e-9)
twist_rotation = quaternion_to_rotation_matrix(twist_quaternion)
twist_aa = quaternion_to_angle_axis(twist_quaternion)
twist_angle = torch.sum(twist_aa, dim=1, keepdim=True) / torch.sum(
twist_axis, dim=1, keepdim=True)
return twist_rotation, twist_angle
|