File size: 2,923 Bytes
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import os
import json
import shutil
import subprocess
import numpy as np
import os.path as osp


def run_openpose(
        video_file,
        output_folder,
        staf_folder,
        vis=False,
):
    pwd = os.getcwd()

    os.chdir(staf_folder)

    render = 1 if vis else 0
    display = 2 if vis else 0
    cmd = [
        'build/examples/openpose/openpose.bin',
        '--model_pose', 'BODY_21A',
        '--tracking', '1',
        '--render_pose', str(render),
        '--video', video_file,
        '--write_json', output_folder,
        '--display', str(display)
    ]

    print('Executing', ' '.join(cmd))
    subprocess.call(cmd)
    os.chdir(pwd)


def read_posetrack_keypoints(output_folder):

    people = dict()

    for idx, result_file in enumerate(sorted(os.listdir(output_folder))):
        json_file = osp.join(output_folder, result_file)
        data = json.load(open(json_file))
        # print(idx, data)
        for person in data['people']:
            person_id = person['person_id'][0]
            joints2d  = person['pose_keypoints_2d']
            if person_id in people.keys():
                people[person_id]['joints2d'].append(joints2d)
                people[person_id]['frames'].append(idx)
            else:
                people[person_id] = {
                    'joints2d': [],
                    'frames': [],
                }
                people[person_id]['joints2d'].append(joints2d)
                people[person_id]['frames'].append(idx)

    for k in people.keys():
        people[k]['joints2d'] = np.array(people[k]['joints2d']).reshape((len(people[k]['joints2d']), -1, 3))
        people[k]['frames'] = np.array(people[k]['frames'])

    return people


def run_posetracker(video_file, staf_folder, posetrack_output_folder='/tmp', display=False):
    posetrack_output_folder = os.path.join(
        posetrack_output_folder,
        f'{os.path.basename(video_file)}_posetrack'
    )

    # run posetrack on video
    run_openpose(
        video_file,
        posetrack_output_folder,
        vis=display,
        staf_folder=staf_folder
    )

    people_dict = read_posetrack_keypoints(posetrack_output_folder)

    shutil.rmtree(posetrack_output_folder)

    return people_dict