ECON / lib /dataset /EvalDataset.py
Yuliang's picture
Support TEXTure
487ee6d
raw
history blame
10.3 kB
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import os
import os.path as osp
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import trimesh
from PIL import Image
from lib.common.render import Render
from lib.dataset.mesh_util import SMPLX, HoppeMesh, projection, rescale_smpl
cape_gender = {
"male":
['00032', '00096', '00122', '00127', '00145', '00215', '02474', '03284', '03375',
'03394'], "female": ['00134', '00159', '03223', '03331', '03383']
}
class EvalDataset:
def __init__(self, cfg, device):
self.root = cfg.root
self.bsize = cfg.batch_size
self.opt = cfg.dataset
self.datasets = self.opt.types
self.input_size = self.opt.input_size
self.scales = self.opt.scales
self.vol_res = cfg.vol_res
# [(feat_name, channel_num),...]
self.in_geo = [item[0] for item in cfg.net.in_geo]
self.in_nml = [item[0] for item in cfg.net.in_nml]
self.in_geo_dim = [item[1] for item in cfg.net.in_geo]
self.in_nml_dim = [item[1] for item in cfg.net.in_nml]
self.in_total = self.in_geo + self.in_nml
self.in_total_dim = self.in_geo_dim + self.in_nml_dim
self.rotations = range(0, 360, 120)
self.datasets_dict = {}
for dataset_id, dataset in enumerate(self.datasets):
dataset_dir = osp.join(self.root, dataset)
mesh_dir = osp.join(dataset_dir, "scans")
smplx_dir = osp.join(dataset_dir, "smplx")
smpl_dir = osp.join(dataset_dir, "smpl")
self.datasets_dict[dataset] = {
"smplx_dir": smplx_dir,
"smpl_dir": smpl_dir,
"mesh_dir": mesh_dir,
"scale": self.scales[dataset_id],
}
self.datasets_dict[dataset].update({
"subjects":
np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str)
})
self.subject_list = self.get_subject_list()
self.smplx = SMPLX()
# PIL to tensor
self.image_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
# PIL to tensor
self.mask_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.0, ), (1.0, )),
])
self.device = device
self.render = Render(size=512, device=self.device)
def render_normal(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_image()
def get_subject_list(self):
subject_list = []
for dataset in self.datasets:
split_txt = ""
if dataset == 'renderpeople':
split_txt = osp.join(self.root, dataset, "loose.txt")
elif dataset == 'cape':
split_txt = osp.join(self.root, dataset, "pose.txt")
if osp.exists(split_txt) and osp.getsize(split_txt) > 0:
print(f"load from {split_txt}")
subject_list += np.loadtxt(split_txt, dtype=str).tolist()
return subject_list
def __len__(self):
return len(self.subject_list) * len(self.rotations)
def __getitem__(self, index):
rid = index % len(self.rotations)
mid = index // len(self.rotations)
rotation = self.rotations[rid]
subject = self.subject_list[mid].split("/")[1]
dataset = self.subject_list[mid].split("/")[0]
render_folder = "/".join([dataset + f"_{self.opt.rotation_num}views", subject])
if not osp.exists(osp.join(self.root, render_folder)):
render_folder = "/".join([dataset + "_36views", subject])
# setup paths
data_dict = {
"dataset": dataset,
"subject": subject,
"rotation": rotation,
"scale": self.datasets_dict[dataset]["scale"],
"calib_path": osp.join(self.root, render_folder, "calib", f"{rotation:03d}.txt"),
"image_path": osp.join(self.root, render_folder, "render", f"{rotation:03d}.png"),
}
if dataset == "cape":
data_dict.update({
"mesh_path":
osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}.obj"),
"smpl_path":
osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.obj"),
})
else:
data_dict.update({
"mesh_path":
osp.join(
self.datasets_dict[dataset]["mesh_dir"],
f"{subject}.obj",
),
"smplx_path":
osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.obj"),
})
# load training data
data_dict.update(self.load_calib(data_dict))
# image/normal/depth loader
for name, channel in zip(self.in_total, self.in_total_dim):
if f"{name}_path" not in data_dict.keys():
data_dict.update({
f"{name}_path":
osp.join(self.root, render_folder, name, f"{rotation:03d}.png")
})
# tensor update
if os.path.exists(data_dict[f"{name}_path"]):
data_dict.update({
name:
self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False)
})
data_dict.update(self.load_mesh(data_dict))
data_dict.update(self.load_smpl(data_dict))
del data_dict["mesh"]
return data_dict
def imagepath2tensor(self, path, channel=3, inv=False):
rgba = Image.open(path).convert("RGBA")
# remove CAPE's noisy outliers using OpenCV's inpainting
if "cape" in path and "T_" not in path:
mask = cv2.imread(path.replace(path.split("/")[-2], "mask"), 0) > 1
img = np.asarray(rgba)[:, :, :3]
fill_mask = ((mask & (img.sum(axis=2) == 0))).astype(np.uint8)
image = Image.fromarray(
cv2.inpaint(img * mask[..., None], fill_mask, 3, cv2.INPAINT_TELEA)
)
mask = Image.fromarray(mask)
else:
mask = rgba.split()[-1]
image = rgba.convert("RGB")
image = self.image_to_tensor(image)
mask = self.mask_to_tensor(mask)
image = (image * mask)[:channel]
return (image * (0.5 - inv) * 2.0).float()
def load_calib(self, data_dict):
calib_data = np.loadtxt(data_dict["calib_path"], dtype=float)
extrinsic = calib_data[:4, :4]
intrinsic = calib_data[4:8, :4]
calib_mat = np.matmul(intrinsic, extrinsic)
calib_mat = torch.from_numpy(calib_mat).float()
return {"calib": calib_mat}
def load_mesh(self, data_dict):
mesh_path = data_dict["mesh_path"]
scale = data_dict["scale"]
scan_mesh = trimesh.load(mesh_path)
verts = scan_mesh.vertices
faces = scan_mesh.faces
mesh = HoppeMesh(verts * scale, faces)
return {
"mesh": mesh,
"verts": torch.as_tensor(verts * scale).float(),
"faces": torch.as_tensor(faces).long(),
}
def load_smpl(self, data_dict):
smpl_type = ("smplx" if ("smplx_path" in data_dict.keys()) else "smpl")
smplx_verts = rescale_smpl(data_dict[f"{smpl_type}_path"], scale=100.0)
smplx_faces = torch.as_tensor(getattr(self.smplx, f"{smpl_type}_faces")).long()
smplx_verts = projection(smplx_verts, data_dict["calib"]).float()
return_dict = {
"smpl_verts": smplx_verts,
"smpl_faces": smplx_faces,
}
return return_dict
def depth_to_voxel(self, data_dict):
data_dict["depth_F"] = transforms.Resize(self.vol_res)(data_dict["depth_F"])
data_dict["depth_B"] = transforms.Resize(self.vol_res)(data_dict["depth_B"])
depth_mask = (~torch.isnan(data_dict['depth_F']))
depth_FB = torch.cat([data_dict['depth_F'], data_dict['depth_B']], dim=0)
depth_FB[:, ~depth_mask[0]] = 0.
# Important: index_long = depth_value - 1
index_z = (((depth_FB + 1.) * 0.5 * self.vol_res) - 1).clip(0, self.vol_res -
1).permute(1, 2, 0)
index_z_ceil = torch.ceil(index_z).long()
index_z_floor = torch.floor(index_z).long()
index_z_frac = torch.frac(index_z)
index_mask = index_z[..., 0] == torch.tensor(self.vol_res * 0.5 - 1).long()
voxels = F.one_hot(index_z_ceil[..., 0], self.vol_res) * index_z_frac[..., 0] + \
F.one_hot(index_z_floor[..., 0], self.vol_res) * (1.0-index_z_frac[..., 0]) + \
F.one_hot(index_z_ceil[..., 1], self.vol_res) * index_z_frac[..., 1]+ \
F.one_hot(index_z_floor[..., 1], self.vol_res) * (1.0 - index_z_frac[..., 1])
voxels[index_mask] *= 0
voxels = torch.flip(voxels, [2]).permute(2, 0, 1).float() #[x-2, y-0, z-1]
return {
"depth_voxels": voxels.flip([
0,
]).unsqueeze(0).to(self.device),
}
def render_depth(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_image(type="depth")