ECON / lib /pixielib /utils /rotation_converter.py
Yuliang's picture
remove MeshLab dependency with Open3D
fb140f6
raw
history blame
18.1 kB
import torch
import torch.nn.functional as F
import numpy as np
""" Rotation Converter
This function is borrowed from https://github.com/kornia/kornia
ref: https://kornia.readthedocs.io/en/v0.1.2/_modules/torchgeometry/core/conversions.html#
Repre: euler angle(3), axis angle(3), rotation matrix(3x3), quaternion(4), continuous rotation representation (6)
batch_rodrigues: axis angle -> matrix
"""
pi = torch.Tensor([3.14159265358979323846])
def rad2deg(tensor):
"""Function that converts angles from radians to degrees.
See :class:`~torchgeometry.RadToDeg` for details.
Args:
tensor (Tensor): Tensor of arbitrary shape.
Returns:
Tensor: Tensor with same shape as input.
Example:
>>> input = tgm.pi * torch.rand(1, 3, 3)
>>> output = tgm.rad2deg(input)
"""
if not torch.is_tensor(tensor):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(tensor)))
return 180.0 * tensor / pi.to(tensor.device).type(tensor.dtype)
def deg2rad(tensor):
"""Function that converts angles from degrees to radians.
See :class:`~torchgeometry.DegToRad` for details.
Args:
tensor (Tensor): Tensor of arbitrary shape.
Returns:
Tensor: Tensor with same shape as input.
Examples::
>>> input = 360. * torch.rand(1, 3, 3)
>>> output = tgm.deg2rad(input)
"""
if not torch.is_tensor(tensor):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(tensor)))
return tensor * pi.to(tensor.device).type(tensor.dtype) / 180.0
# to quaternion
def euler_to_quaternion(r):
x = r[..., 0]
y = r[..., 1]
z = r[..., 2]
z = z / 2.0
y = y / 2.0
x = x / 2.0
cz = torch.cos(z)
sz = torch.sin(z)
cy = torch.cos(y)
sy = torch.sin(y)
cx = torch.cos(x)
sx = torch.sin(x)
quaternion = torch.zeros_like(r.repeat(1, 2))[..., :4].to(r.device)
quaternion[..., 0] += cx * cy * cz - sx * sy * sz
quaternion[..., 1] += cx * sy * sz + cy * cz * sx
quaternion[..., 2] += cx * cz * sy - sx * cy * sz
quaternion[..., 3] += cx * cy * sz + sx * cz * sy
return quaternion
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(rotation_matrix)))
if len(rotation_matrix.shape) > 3:
raise ValueError(
"Input size must be a three dimensional tensor. Got {}".format(rotation_matrix.shape)
)
# if not rotation_matrix.shape[-2:] == (3, 4):
# raise ValueError(
# "Input size must be a N x 3 x 4 tensor. Got {}".format(
# rotation_matrix.shape))
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack(
[
rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
t0,
rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
],
-1,
)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack(
[
rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
t1,
rmat_t[:, 1, 2] + rmat_t[:, 2, 1],
],
-1,
)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack(
[
rmat_t[:, 0, 1] - rmat_t[:, 1, 0],
rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
rmat_t[:, 1, 2] + rmat_t[:, 2, 1],
t2,
],
-1,
)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack(
[
t3,
rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
rmat_t[:, 2, 0] - rmat_t[:, 0, 2],
rmat_t[:, 0, 1] - rmat_t[:, 1, 0],
],
-1,
)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1.float()
mask_c1 = mask_d2 * (1 - mask_d0_d1.float())
mask_c2 = (1 - mask_d2.float()) * mask_d0_nd1
mask_c3 = (1 - mask_d2.float()) * (1 - mask_d0_nd1.float())
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(
t0_rep * mask_c0 + t1_rep * mask_c1 + t2_rep * mask_c2 # noqa
+ t3_rep * mask_c3
) # noqa
q *= 0.5
return q
def angle_axis_to_quaternion(angle_axis: torch.Tensor) -> torch.Tensor:
"""Convert an angle axis to a quaternion.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
angle_axis (torch.Tensor): tensor with angle axis.
Return:
torch.Tensor: tensor with quaternion.
Shape:
- Input: :math:`(*, 3)` where `*` means, any number of dimensions
- Output: :math:`(*, 4)`
Example:
>>> angle_axis = torch.rand(2, 4) # Nx4
>>> quaternion = tgm.angle_axis_to_quaternion(angle_axis) # Nx3
"""
if not torch.is_tensor(angle_axis):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(angle_axis)))
if not angle_axis.shape[-1] == 3:
raise ValueError(
"Input must be a tensor of shape Nx3 or 3. Got {}".format(angle_axis.shape)
)
# unpack input and compute conversion
a0: torch.Tensor = angle_axis[..., 0:1]
a1: torch.Tensor = angle_axis[..., 1:2]
a2: torch.Tensor = angle_axis[..., 2:3]
theta_squared: torch.Tensor = a0 * a0 + a1 * a1 + a2 * a2
theta: torch.Tensor = torch.sqrt(theta_squared)
half_theta: torch.Tensor = theta * 0.5
mask: torch.Tensor = theta_squared > 0.0
ones: torch.Tensor = torch.ones_like(half_theta)
k_neg: torch.Tensor = 0.5 * ones
k_pos: torch.Tensor = torch.sin(half_theta) / theta
k: torch.Tensor = torch.where(mask, k_pos, k_neg)
w: torch.Tensor = torch.where(mask, torch.cos(half_theta), ones)
quaternion: torch.Tensor = torch.zeros_like(angle_axis)
quaternion[..., 0:1] += a0 * k
quaternion[..., 1:2] += a1 * k
quaternion[..., 2:3] += a2 * k
return torch.cat([w, quaternion], dim=-1)
# quaternion to
def quaternion_to_rotation_matrix(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack(
[
w2 + x2 - y2 - z2,
2 * xy - 2 * wz,
2 * wy + 2 * xz,
2 * wz + 2 * xy,
w2 - x2 + y2 - z2,
2 * yz - 2 * wx,
2 * xz - 2 * wy,
2 * wx + 2 * yz,
w2 - x2 - y2 + z2,
],
dim=1,
).view(B, 3, 3)
return rotMat
def quaternion_to_angle_axis(quaternion: torch.Tensor):
"""Convert quaternion vector to angle axis of rotation. TODO: CORRECT
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError(
"Input must be a tensor of shape Nx4 or 4. Got {}".format(quaternion.shape)
)
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(
cos_theta < 0.0,
torch.atan2(-sin_theta, -cos_theta),
torch.atan2(sin_theta, cos_theta),
)
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta).to(quaternion.device)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion).to(quaternion.device)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
# credit to Muhammed Kocabas
# matrix to euler angle
# Device = Union[str, torch.device]
_AXIS_TO_IND = {"x": 0, "y": 1, "z": 2}
def _elementary_basis_vector(axis):
b = torch.zeros(3)
b[_AXIS_TO_IND[axis]] = 1
return b
def _compute_euler_from_matrix(dcm, seq="xyz", extrinsic=False):
# The algorithm assumes intrinsic frame transformations. For representation
# the paper uses transformation matrices, which are transpose of the
# direction cosine matrices used by our Rotation class.
# Adapt the algorithm for our case by
# 1. Instead of transposing our representation, use the transpose of the
# O matrix as defined in the paper, and be careful to swap indices
# 2. Reversing both axis sequence and angles for extrinsic rotations
orig_device = dcm.device
dcm = dcm.to("cpu")
seq = seq.lower()
if extrinsic:
seq = seq[::-1]
if dcm.ndim == 2:
dcm = dcm[None, :, :]
num_rotations = dcm.shape[0]
device = dcm.device
# Step 0
# Algorithm assumes axes as column vectors, here we use 1D vectors
n1 = _elementary_basis_vector(seq[0])
n2 = _elementary_basis_vector(seq[1])
n3 = _elementary_basis_vector(seq[2])
# Step 2
sl = torch.dot(torch.cross(n1, n2), n3)
cl = torch.dot(n1, n3)
# angle offset is lambda from the paper referenced in [2] from docstring of
# `as_euler` function
offset = torch.atan2(sl, cl)
c = torch.stack((n2, torch.cross(n1, n2), n1)).type(dcm.dtype).to(device)
# Step 3
rot = torch.tensor([
[1, 0, 0],
[0, cl, sl],
[0, -sl, cl],
]).type(dcm.dtype)
# import IPython; IPython.embed(); exit
res = torch.einsum("ij,...jk->...ik", c, dcm)
dcm_transformed = torch.einsum("...ij,jk->...ik", res, c.T @ rot)
# Step 4
angles = torch.zeros((num_rotations, 3), dtype=dcm.dtype, device=device)
# Ensure less than unit norm
positive_unity = dcm_transformed[:, 2, 2] > 1
negative_unity = dcm_transformed[:, 2, 2] < -1
dcm_transformed[positive_unity, 2, 2] = 1
dcm_transformed[negative_unity, 2, 2] = -1
angles[:, 1] = torch.acos(dcm_transformed[:, 2, 2])
# Steps 5, 6
eps = 1e-7
safe1 = torch.abs(angles[:, 1]) >= eps
safe2 = torch.abs(angles[:, 1] - np.pi) >= eps
# Step 4 (Completion)
angles[:, 1] += offset
# 5b
safe_mask = torch.logical_and(safe1, safe2)
angles[safe_mask,
0] = torch.atan2(dcm_transformed[safe_mask, 0, 2], -dcm_transformed[safe_mask, 1, 2])
angles[safe_mask,
2] = torch.atan2(dcm_transformed[safe_mask, 2, 0], dcm_transformed[safe_mask, 2, 1])
if extrinsic:
# For extrinsic, set first angle to zero so that after reversal we
# ensure that third angle is zero
# 6a
angles[~safe_mask, 0] = 0
# 6b
angles[~safe1, 2] = torch.atan2(
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1],
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1],
)
# 6c
angles[~safe2, 2] = -torch.atan2(
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1],
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1],
)
else:
# For instrinsic, set third angle to zero
# 6a
angles[~safe_mask, 2] = 0
# 6b
angles[~safe1, 0] = torch.atan2(
dcm_transformed[~safe1, 1, 0] - dcm_transformed[~safe1, 0, 1],
dcm_transformed[~safe1, 0, 0] + dcm_transformed[~safe1, 1, 1],
)
# 6c
angles[~safe2, 0] = torch.atan2(
dcm_transformed[~safe2, 1, 0] + dcm_transformed[~safe2, 0, 1],
dcm_transformed[~safe2, 0, 0] - dcm_transformed[~safe2, 1, 1],
)
# Step 7
if seq[0] == seq[2]:
# lambda = 0, so we can only ensure angle2 -> [0, pi]
adjust_mask = torch.logical_or(angles[:, 1] < 0, angles[:, 1] > np.pi)
else:
# lambda = + or - pi/2, so we can ensure angle2 -> [-pi/2, pi/2]
adjust_mask = torch.logical_or(angles[:, 1] < -np.pi / 2, angles[:, 1] > np.pi / 2)
# Dont adjust gimbal locked angle sequences
adjust_mask = torch.logical_and(adjust_mask, safe_mask)
angles[adjust_mask, 0] += np.pi
angles[adjust_mask, 1] = 2 * offset - angles[adjust_mask, 1]
angles[adjust_mask, 2] -= np.pi
angles[angles < -np.pi] += 2 * np.pi
angles[angles > np.pi] -= 2 * np.pi
# Step 8
if not torch.all(safe_mask):
print(
"Gimbal lock detected. Setting third angle to zero since"
"it is not possible to uniquely determine all angles."
)
# Reverse role of extrinsic and intrinsic rotations, but let third angle be
# zero for gimbal locked cases
if extrinsic:
# angles = angles[:, ::-1]
angles = torch.flip(
angles,
dims=[
-1,
],
)
angles = angles.to(orig_device)
return angles
# batch converter
def batch_euler2axis(r):
return quaternion_to_angle_axis(euler_to_quaternion(r))
def batch_euler2matrix(r):
return quaternion_to_rotation_matrix(euler_to_quaternion(r))
def batch_matrix2euler(rot_mats):
# Calculates rotation matrix to euler angles
# Careful for extreme cases of eular angles like [0.0, pi, 0.0]
# only y biw
# TODO: add x, z
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] + rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
return torch.atan2(-rot_mats[:, 2, 0], sy)
def batch_matrix2axis(rot_mats):
return quaternion_to_angle_axis(rotation_matrix_to_quaternion(rot_mats))
def batch_axis2matrix(theta):
# angle axis to rotation matrix
# theta N x 3
# return quat2mat(quat)
# batch_rodrigues
return quaternion_to_rotation_matrix(angle_axis_to_quaternion(theta))
def batch_axis2euler(theta):
return batch_matrix2euler(batch_axis2matrix(theta))
def batch_axis2euler(r):
return rot_mat_to_euler(batch_rodrigues(r))
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
"""same as batch_matrix2axis
Calculates the rotation matrices for a batch of rotation vectors
Parameters
----------
rot_vecs: torch.tensor Nx3
array of N axis-angle vectors
Returns
-------
R: torch.tensor Nx3x3
The rotation matrices for the given axis-angle parameters
Code from smplx/flame, what PS people often use
"""
batch_size = rot_vecs.shape[0]
device = rot_vecs.device
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
rot_dir = rot_vecs / angle
cos = torch.unsqueeze(torch.cos(angle), dim=1)
sin = torch.unsqueeze(torch.sin(angle), dim=1)
# Bx1 arrays
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1).view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
return rot_mat
def batch_cont2matrix(module_input):
"""Decoder for transforming a latent representation to rotation matrices
Implements the decoding method described in:
"On the Continuity of Rotation Representations in Neural Networks"
Code from https://github.com/vchoutas/expose
"""
batch_size = module_input.shape[0]
reshaped_input = module_input.reshape(-1, 3, 2)
# Normalize the first vector
b1 = F.normalize(reshaped_input[:, :, 0].clone(), dim=1)
dot_prod = torch.sum(b1 * reshaped_input[:, :, 1].clone(), dim=1, keepdim=True)
# Compute the second vector by finding the orthogonal complement to it
b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=1)
# Finish building the basis by taking the cross product
b3 = torch.cross(b1, b2, dim=1)
rot_mats = torch.stack([b1, b2, b3], dim=-1)
return rot_mats.view(batch_size, -1, 3, 3)