Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import logging | |
import warnings | |
warnings.filterwarnings("ignore") | |
logging.getLogger("lightning").setLevel(logging.ERROR) | |
logging.getLogger("trimesh").setLevel(logging.ERROR) | |
import argparse | |
import os | |
import torch | |
from termcolor import colored | |
from tqdm.auto import tqdm | |
from apps.IFGeo import IFGeo | |
from apps.Normal import Normal | |
from lib.common.BNI import BNI | |
from lib.common.BNI_utils import save_normal_tensor | |
from lib.common.config import cfg | |
from lib.common.voxelize import VoxelGrid | |
from lib.dataset.EvalDataset import EvalDataset | |
from lib.dataset.Evaluator import Evaluator | |
from lib.dataset.mesh_util import * | |
torch.backends.cudnn.benchmark = True | |
speed_analysis = False | |
if __name__ == "__main__": | |
if speed_analysis: | |
import cProfile | |
import pstats | |
profiler = cProfile.Profile() | |
profiler.enable() | |
# loading cfg file | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-gpu", "--gpu_device", type=int, default=0) | |
parser.add_argument("-ifnet", action="store_true") | |
parser.add_argument("-cfg", "--config", type=str, default="./configs/econ.yaml") | |
args = parser.parse_args() | |
# cfg read and merge | |
cfg.merge_from_file(args.config) | |
device = torch.device("cuda:0") | |
cfg_test_list = [ | |
"dataset.rotation_num", | |
3, | |
"bni.use_smpl", | |
["hand"], | |
"bni.use_ifnet", | |
args.ifnet, | |
"bni.cut_intersection", | |
True, | |
] | |
# # if w/ RenderPeople+CAPE | |
# cfg_test_list += ["dataset.types", ["cape", "renderpeople"], "dataset.scales", [100.0, 1.0]] | |
# if only w/ CAPE | |
cfg_test_list += ["dataset.types", ["cape"], "dataset.scales", [100.0]] | |
cfg.merge_from_list(cfg_test_list) | |
cfg.freeze() | |
# load normal model | |
normal_net = Normal.load_from_checkpoint( | |
cfg=cfg, checkpoint_path=cfg.normal_path, map_location=device, strict=False | |
) | |
normal_net = normal_net.to(device) | |
normal_net.netG.eval() | |
print( | |
colored( | |
f"Resume Normal Estimator from: {cfg.normal_path}", "green" | |
) | |
) | |
# SMPLX object | |
SMPLX_object = SMPLX() | |
dataset = EvalDataset(cfg=cfg, device=device) | |
evaluator = Evaluator(device=device) | |
export_dir = osp.join(cfg.results_path, cfg.name, "IF-Net+" if cfg.bni.use_ifnet else "SMPL-X") | |
print(colored(f"Dataset Size: {len(dataset)}", "green")) | |
if cfg.bni.use_ifnet: | |
# load IFGeo model | |
ifnet = IFGeo.load_from_checkpoint( | |
cfg=cfg, checkpoint_path=cfg.ifnet_path, map_location=device, strict=False | |
) | |
ifnet = ifnet.to(device) | |
ifnet.netG.eval() | |
print(colored(f"Resume IF-Net+ from {Format.start} {cfg.ifnet_path} {Format.end}", "green")) | |
print(colored(f"Complete with {Format.start} IF-Nets+ (Implicit) {Format.end}", "green")) | |
else: | |
print(colored(f"Complete with {Format.start} SMPL-X (Explicit) {Format.end}", "green")) | |
pbar = tqdm(dataset) | |
benchmark = {} | |
for data in pbar: | |
for key in data.keys(): | |
if torch.is_tensor(data[key]): | |
data[key] = data[key].unsqueeze(0).to(device) | |
is_smplx = True if 'smplx_path' in data.keys() else False | |
# filenames and makedirs | |
current_name = f"{data['dataset']}-{data['subject']}-{data['rotation']:03d}" | |
current_dir = osp.join(export_dir, data['dataset'], data['subject']) | |
os.makedirs(current_dir, exist_ok=True) | |
final_path = osp.join(current_dir, f"{current_name}_final.obj") | |
if not osp.exists(final_path): | |
in_tensor = data.copy() | |
batch_smpl_verts = in_tensor["smpl_verts"].detach() | |
batch_smpl_verts *= torch.tensor([1.0, -1.0, 1.0]).to(device) | |
batch_smpl_faces = in_tensor["smpl_faces"].detach() | |
in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth( | |
batch_smpl_verts, batch_smpl_faces | |
) | |
with torch.no_grad(): | |
in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor) | |
smpl_mesh = trimesh.Trimesh( | |
batch_smpl_verts.cpu().numpy()[0], | |
batch_smpl_faces.cpu().numpy()[0] | |
) | |
side_mesh = smpl_mesh.copy() | |
face_mesh = smpl_mesh.copy() | |
hand_mesh = smpl_mesh.copy() | |
smplx_mesh = smpl_mesh.copy() | |
# save normals, depths and masks | |
BNI_dict = save_normal_tensor( | |
in_tensor, | |
0, | |
osp.join(current_dir, "BNI/param_dict"), | |
cfg.bni.thickness if data['dataset'] == 'renderpeople' else 0.0, | |
) | |
# BNI process | |
BNI_object = BNI( | |
dir_path=osp.join(current_dir, "BNI"), | |
name=current_name, | |
BNI_dict=BNI_dict, | |
cfg=cfg.bni, | |
device=device | |
) | |
BNI_object.extract_surface(False) | |
if is_smplx: | |
side_mesh = apply_face_mask(side_mesh, ~SMPLX_object.smplx_eyeball_fid_mask) | |
if cfg.bni.use_ifnet: | |
# mesh completion via IF-net | |
in_tensor.update( | |
dataset.depth_to_voxel({ | |
"depth_F": BNI_object.F_depth.unsqueeze(0).to(device), "depth_B": | |
BNI_object.B_depth.unsqueeze(0).to(device) | |
}) | |
) | |
occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[ | |
0, | |
] * 3, scale=2.0).data.transpose(2, 1, 0) | |
occupancies = np.flip(occupancies, axis=1) | |
in_tensor["body_voxels"] = torch.tensor(occupancies.copy() | |
).float().unsqueeze(0).to(device) | |
with torch.no_grad(): | |
sdf = ifnet.reconEngine(netG=ifnet.netG, batch=in_tensor) | |
verts_IF, faces_IF = ifnet.reconEngine.export_mesh(sdf) | |
if ifnet.clean_mesh_flag: | |
verts_IF, faces_IF = clean_mesh(verts_IF, faces_IF) | |
side_mesh_path = osp.join(current_dir, f"{current_name}_IF.obj") | |
side_mesh = remesh_laplacian(trimesh.Trimesh(verts_IF, faces_IF), side_mesh_path) | |
full_lst = [] | |
if "hand" in cfg.bni.use_smpl: | |
# only hands | |
if is_smplx: | |
hand_mesh = apply_vertex_mask(hand_mesh, SMPLX_object.smplx_mano_vertex_mask) | |
else: | |
hand_mesh = apply_vertex_mask(hand_mesh, SMPLX_object.smpl_mano_vertex_mask) | |
# remove hand neighbor triangles | |
BNI_object.F_B_trimesh = part_removal( | |
BNI_object.F_B_trimesh, | |
hand_mesh, | |
cfg.bni.hand_thres, | |
device, | |
smplx_mesh, | |
region="hand" | |
) | |
side_mesh = part_removal( | |
side_mesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand" | |
) | |
# hand_mesh.export(osp.join(current_dir, f"{current_name}_hands.obj")) | |
full_lst += [hand_mesh] | |
full_lst += [BNI_object.F_B_trimesh] | |
# initial side_mesh could be SMPLX or IF-net | |
side_mesh = part_removal( | |
side_mesh, sum(full_lst), 2e-2, device, smplx_mesh, region="", clean=False | |
) | |
full_lst += [side_mesh] | |
if cfg.bni.use_poisson: | |
final_mesh = poisson( | |
sum(full_lst), | |
final_path, | |
cfg.bni.poisson_depth, | |
) | |
else: | |
final_mesh = sum(full_lst) | |
final_mesh.export(final_path) | |
else: | |
final_mesh = trimesh.load(final_path) | |
# evaluation | |
metric_path = osp.join(export_dir, "metric.npy") | |
if osp.exists(metric_path): | |
benchmark = np.load(metric_path, allow_pickle=True).item() | |
if benchmark == {} or data["dataset"] not in benchmark.keys( | |
) or f"{data['subject']}-{data['rotation']}" not in benchmark[data["dataset"]]["subject"]: | |
result_eval = { | |
"verts_gt": data["verts"][0], | |
"faces_gt": data["faces"][0], | |
"verts_pr": final_mesh.vertices, | |
"faces_pr": final_mesh.faces, | |
"calib": data["calib"][0], | |
} | |
evaluator.set_mesh(result_eval, scale=False) | |
chamfer, p2s = evaluator.calculate_chamfer_p2s(num_samples=1000) | |
nc = evaluator.calculate_normal_consist(osp.join(current_dir, f"{current_name}_nc.png")) | |
if data["dataset"] not in benchmark.keys(): | |
benchmark[data["dataset"]] = { | |
"chamfer": [chamfer.item()], | |
"p2s": [p2s.item()], | |
"nc": [nc.item()], | |
"subject": [f"{data['subject']}-{data['rotation']}"], | |
"total": 1, | |
} | |
else: | |
benchmark[data["dataset"]]["chamfer"] += [chamfer.item()] | |
benchmark[data["dataset"]]["p2s"] += [p2s.item()] | |
benchmark[data["dataset"]]["nc"] += [nc.item()] | |
benchmark[data["dataset"]]["subject"] += [f"{data['subject']}-{data['rotation']}"] | |
benchmark[data["dataset"]]["total"] += 1 | |
np.save(metric_path, benchmark, allow_pickle=True) | |
else: | |
subject_idx = benchmark[data["dataset"] | |
]["subject"].index(f"{data['subject']}-{data['rotation']}") | |
chamfer = torch.tensor(benchmark[data["dataset"]]["chamfer"][subject_idx]) | |
p2s = torch.tensor(benchmark[data["dataset"]]["p2s"][subject_idx]) | |
nc = torch.tensor(benchmark[data["dataset"]]["nc"][subject_idx]) | |
pbar.set_description( | |
f"{current_name} | {chamfer.item():.3f} | {p2s.item():.3f} | {nc.item():.4f}" | |
) | |
for dataset in benchmark.keys(): | |
for metric in ["chamfer", "p2s", "nc"]: | |
print( | |
f"{dataset}-{metric}: {sum(benchmark[dataset][metric])/benchmark[dataset]['total']:.4f}" | |
) | |
if cfg.bni.use_ifnet: | |
print(colored("Finish evaluating on ECON_IF", "green")) | |
else: | |
print(colored("Finish evaluating of ECON_EX", "green")) | |
if speed_analysis: | |
profiler.disable() | |
profiler.dump_stats(osp.join(export_dir, "econ.stats")) | |
stats = pstats.Stats(osp.join(export_dir, "econ.stats")) | |
stats.sort_stats("cumtime").print_stats(10) | |