Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import os | |
from numpy.testing._private.utils import print_assert_equal | |
import torch | |
import numpy as np | |
import joblib | |
from .geometry import batch_euler2matrix | |
def f_pix2vfov(f_pix, img_h): | |
if torch.is_tensor(f_pix): | |
fov = 2. * torch.arctan(img_h / (2. * f_pix)) | |
else: | |
fov = 2. * np.arctan(img_h / (2. * f_pix)) | |
return fov | |
def vfov2f_pix(fov, img_h): | |
if torch.is_tensor(fov): | |
f_pix = img_h / 2. / torch.tan(fov / 2.) | |
else: | |
f_pix = img_h / 2. / np.tan(fov / 2.) | |
return f_pix | |
def read_cam_params(cam_params, orig_shape=None): | |
# These are predicted camera parameters | |
# cam_param_folder = CAM_PARAM_FOLDERS[dataset_name][cam_param_type] | |
cam_pitch = cam_params['pitch'].item() | |
cam_roll = cam_params['roll'].item() if 'roll' in cam_params else None | |
cam_vfov = cam_params['vfov'].item() if 'vfov' in cam_params else None | |
cam_focal_length = cam_params['f_pix'] | |
orig_shape = cam_params['orig_resolution'] | |
# cam_rotmat = batch_euler2matrix(torch.tensor([[cam_pitch, 0., cam_roll]]).float())[0] | |
cam_rotmat = batch_euler2matrix(torch.tensor([[cam_pitch, 0., 0.]]).float())[0] | |
pred_cam_int = torch.zeros(3, 3) | |
cx, cy = orig_shape[1] / 2, orig_shape[0] / 2 | |
pred_cam_int[0, 0] = cam_focal_length | |
pred_cam_int[1, 1] = cam_focal_length | |
pred_cam_int[:-1, -1] = torch.tensor([cx, cy]) | |
cam_int = pred_cam_int.float() | |
return cam_rotmat, cam_int, cam_vfov, cam_pitch, cam_roll, cam_focal_length | |
def homo_vector(vector): | |
""" | |
vector: B x N x C | |
h_vector: B x N x (C + 1) | |
""" | |
batch_size, n_pts = vector.shape[:2] | |
h_vector = torch.cat([vector, torch.ones((batch_size, n_pts, 1)).to(vector)], dim=-1) | |
return h_vector | |