ECON / lib /pymafx /utils /common.py
Yuliang's picture
init
da48dbe
raw
history blame
29.1 kB
import torch
import numpy as np
import logging
from copy import deepcopy
from .utils.libkdtree import KDTree
logger_py = logging.getLogger(__name__)
def compute_iou(occ1, occ2):
''' Computes the Intersection over Union (IoU) value for two sets of
occupancy values.
Args:
occ1 (tensor): first set of occupancy values
occ2 (tensor): second set of occupancy values
'''
occ1 = np.asarray(occ1)
occ2 = np.asarray(occ2)
# Put all data in second dimension
# Also works for 1-dimensional data
if occ1.ndim >= 2:
occ1 = occ1.reshape(occ1.shape[0], -1)
if occ2.ndim >= 2:
occ2 = occ2.reshape(occ2.shape[0], -1)
# Convert to boolean values
occ1 = (occ1 >= 0.5)
occ2 = (occ2 >= 0.5)
# Compute IOU
area_union = (occ1 | occ2).astype(np.float32).sum(axis=-1)
area_intersect = (occ1 & occ2).astype(np.float32).sum(axis=-1)
iou = (area_intersect / area_union)
return iou
def rgb2gray(rgb):
''' rgb of size B x h x w x 3
'''
r, g, b = rgb[:, :, :, 0], rgb[:, :, :, 1], rgb[:, :, :, 2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def sample_patch_points(batch_size, n_points, patch_size=1,
image_resolution=(128, 128), continuous=True):
''' Returns sampled points in the range [-1, 1].
Args:
batch_size (int): required batch size
n_points (int): number of points to sample
patch_size (int): size of patch; if > 1, patches of size patch_size
are sampled instead of individual points
image_resolution (tuple): image resolution (required for calculating
the pixel distances)
continuous (bool): whether to sample continuously or only on pixel
locations
'''
assert(patch_size > 0)
# Calculate step size for [-1, 1] that is equivalent to a pixel in
# original resolution
h_step = 1. / image_resolution[0]
w_step = 1. / image_resolution[1]
# Get number of patches
patch_size_squared = patch_size ** 2
n_patches = int(n_points / patch_size_squared)
if continuous:
p = torch.rand(batch_size, n_patches, 2) # [0, 1]
else:
px = torch.randint(0, image_resolution[1], size=(
batch_size, n_patches, 1)).float() / (image_resolution[1] - 1)
py = torch.randint(0, image_resolution[0], size=(
batch_size, n_patches, 1)).float() / (image_resolution[0] - 1)
p = torch.cat([px, py], dim=-1)
# Scale p to [0, (1 - (patch_size - 1) * step) ]
p[:, :, 0] *= 1 - (patch_size - 1) * w_step
p[:, :, 1] *= 1 - (patch_size - 1) * h_step
# Add points
patch_arange = torch.arange(patch_size)
x_offset, y_offset = torch.meshgrid(patch_arange, patch_arange)
patch_offsets = torch.stack(
[x_offset.reshape(-1), y_offset.reshape(-1)],
dim=1).view(1, 1, -1, 2).repeat(batch_size, n_patches, 1, 1).float()
patch_offsets[:, :, :, 0] *= w_step
patch_offsets[:, :, :, 1] *= h_step
# Add patch_offsets to points
p = p.view(batch_size, n_patches, 1, 2) + patch_offsets
# Scale to [-1, x]
p = p * 2 - 1
p = p.view(batch_size, -1, 2)
amax, amin = p.max(), p.min()
assert(amax <= 1. and amin >= -1.)
return p
def get_proposal_points_in_unit_cube(ray0, ray_direction, padding=0.1,
eps=1e-6, n_steps=40):
''' Returns n_steps equally spaced points inside the unit cube on the rays
cast from ray0 with direction ray_direction.
This function is used to get the ray marching points {p^ray_j} for a given
camera position ray0 and
a given ray direction ray_direction which goes from the camera_position to
the pixel location.
NOTE: The returned values d_proposal are the lengths of the ray:
p^ray_j = ray0 + d_proposal_j * ray_direction
Args:
ray0 (tensor): Start positions of the rays
ray_direction (tensor): Directions of rays
padding (float): Padding which is applied to the unit cube
eps (float): The epsilon value for numerical stability
n_steps (int): number of steps
'''
batch_size, n_pts, _ = ray0.shape
device = ray0.device
p_intervals, d_intervals, mask_inside_cube = \
check_ray_intersection_with_unit_cube(ray0, ray_direction, padding,
eps)
d_proposal = d_intervals[:, :, 0].unsqueeze(-1) + \
torch.linspace(0, 1, steps=n_steps).to(device).view(1, 1, -1) * \
(d_intervals[:, :, 1] - d_intervals[:, :, 0]).unsqueeze(-1)
d_proposal = d_proposal.unsqueeze(-1)
return d_proposal, mask_inside_cube
def check_ray_intersection_with_unit_cube(ray0, ray_direction, padding=0.1,
eps=1e-6, scale=2.0):
''' Checks if rays ray0 + d * ray_direction intersect with unit cube with
padding padding.
It returns the two intersection points as well as the sorted ray lengths d.
Args:
ray0 (tensor): Start positions of the rays
ray_direction (tensor): Directions of rays
padding (float): Padding which is applied to the unit cube
eps (float): The epsilon value for numerical stability
scale (float): cube size
'''
batch_size, n_pts, _ = ray0.shape
device = ray0.device
# calculate intersections with unit cube (< . , . > is the dot product)
# <n, x - p> = <n, ray0 + d * ray_direction - p_e> = 0
# d = - <n, ray0 - p_e> / <n, ray_direction>
# Get points on plane p_e
p_distance = (scale * 0.5) + padding/2
p_e = torch.ones(batch_size, n_pts, 6).to(device) * p_distance
p_e[:, :, 3:] *= -1.
# Calculate the intersection points with given formula
nominator = p_e - ray0.repeat(1, 1, 2)
denominator = ray_direction.repeat(1, 1, 2)
d_intersect = nominator / denominator
p_intersect = ray0.unsqueeze(-2) + d_intersect.unsqueeze(-1) * \
ray_direction.unsqueeze(-2)
# Calculate mask where points intersect unit cube
p_mask_inside_cube = (
(p_intersect[:, :, :, 0] <= p_distance + eps) &
(p_intersect[:, :, :, 1] <= p_distance + eps) &
(p_intersect[:, :, :, 2] <= p_distance + eps) &
(p_intersect[:, :, :, 0] >= -(p_distance + eps)) &
(p_intersect[:, :, :, 1] >= -(p_distance + eps)) &
(p_intersect[:, :, :, 2] >= -(p_distance + eps))
).cpu()
# Correct rays are these which intersect exactly 2 times
mask_inside_cube = p_mask_inside_cube.sum(-1) == 2
# Get interval values for p's which are valid
p_intervals = p_intersect[mask_inside_cube][p_mask_inside_cube[
mask_inside_cube]].view(-1, 2, 3)
p_intervals_batch = torch.zeros(batch_size, n_pts, 2, 3).to(device)
p_intervals_batch[mask_inside_cube] = p_intervals
# Calculate ray lengths for the interval points
d_intervals_batch = torch.zeros(batch_size, n_pts, 2).to(device)
norm_ray = torch.norm(ray_direction[mask_inside_cube], dim=-1)
d_intervals_batch[mask_inside_cube] = torch.stack([
torch.norm(p_intervals[:, 0] -
ray0[mask_inside_cube], dim=-1) / norm_ray,
torch.norm(p_intervals[:, 1] -
ray0[mask_inside_cube], dim=-1) / norm_ray,
], dim=-1)
# Sort the ray lengths
d_intervals_batch, indices_sort = d_intervals_batch.sort()
p_intervals_batch = p_intervals_batch[
torch.arange(batch_size).view(-1, 1, 1),
torch.arange(n_pts).view(1, -1, 1),
indices_sort
]
return p_intervals_batch, d_intervals_batch, mask_inside_cube
def intersect_camera_rays_with_unit_cube(
pixels, camera_mat, world_mat, scale_mat, padding=0.1, eps=1e-6,
use_ray_length_as_depth=True):
''' Returns the intersection points of ray cast from camera origin to
pixel points p on the image plane.
The function returns the intersection points as well the depth values and
a mask specifying which ray intersects the unit cube.
Args:
pixels (tensor): Pixel points on image plane (range [-1, 1])
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
padding (float): Padding which is applied to the unit cube
eps (float): The epsilon value for numerical stability
'''
batch_size, n_points, _ = pixels.shape
pixel_world = image_points_to_world(
pixels, camera_mat, world_mat, scale_mat)
camera_world = origin_to_world(
n_points, camera_mat, world_mat, scale_mat)
ray_vector = (pixel_world - camera_world)
p_cube, d_cube, mask_cube = check_ray_intersection_with_unit_cube(
camera_world, ray_vector, padding=padding, eps=eps)
if not use_ray_length_as_depth:
p_cam = transform_to_camera_space(p_cube.view(
batch_size, -1, 3), camera_mat, world_mat, scale_mat).view(
batch_size, n_points, -1, 3)
d_cube = p_cam[:, :, :, -1]
return p_cube, d_cube, mask_cube
def arange_pixels(resolution=(128, 128), batch_size=1, image_range=(-1., 1.),
subsample_to=None):
''' Arranges pixels for given resolution in range image_range.
The function returns the unscaled pixel locations as integers and the
scaled float values.
Args:
resolution (tuple): image resolution
batch_size (int): batch size
image_range (tuple): range of output points (default [-1, 1])
subsample_to (int): if integer and > 0, the points are randomly
subsampled to this value
'''
h, w = resolution
n_points = resolution[0] * resolution[1]
# Arrange pixel location in scale resolution
pixel_locations = torch.meshgrid(torch.arange(0, w), torch.arange(0, h))
pixel_locations = torch.stack(
[pixel_locations[0], pixel_locations[1]],
dim=-1).long().view(1, -1, 2).repeat(batch_size, 1, 1)
pixel_scaled = pixel_locations.clone().float()
# Shift and scale points to match image_range
scale = (image_range[1] - image_range[0])
loc = scale / 2
pixel_scaled[:, :, 0] = scale * pixel_scaled[:, :, 0] / (w - 1) - loc
pixel_scaled[:, :, 1] = scale * pixel_scaled[:, :, 1] / (h - 1) - loc
# Subsample points if subsample_to is not None and > 0
if (subsample_to is not None and subsample_to > 0 and
subsample_to < n_points):
idx = np.random.choice(pixel_scaled.shape[1], size=(subsample_to,),
replace=False)
pixel_scaled = pixel_scaled[:, idx]
pixel_locations = pixel_locations[:, idx]
return pixel_locations, pixel_scaled
def to_pytorch(tensor, return_type=False):
''' Converts input tensor to pytorch.
Args:
tensor (tensor): Numpy or Pytorch tensor
return_type (bool): whether to return input type
'''
is_numpy = False
if type(tensor) == np.ndarray:
tensor = torch.from_numpy(tensor)
is_numpy = True
tensor = tensor.clone()
if return_type:
return tensor, is_numpy
return tensor
def get_mask(tensor):
''' Returns mask of non-illegal values for tensor.
Args:
tensor (tensor): Numpy or Pytorch tensor
'''
tensor, is_numpy = to_pytorch(tensor, True)
mask = ((abs(tensor) != np.inf) & (torch.isnan(tensor) == False))
mask = mask.to(torch.bool)
if is_numpy:
mask = mask.numpy()
return mask
def transform_mesh(mesh, transform):
''' Transforms a mesh with given transformation.
Args:
mesh (trimesh mesh): mesh
transform (tensor): transformation matrix of size 4 x 4
'''
mesh = deepcopy(mesh)
v = np.asarray(mesh.vertices).astype(np.float32)
v_transformed = transform_pointcloud(v, transform)
mesh.vertices = v_transformed
return mesh
def transform_pointcloud(pointcloud, transform):
''' Transforms a point cloud with given transformation.
Args:
pointcloud (tensor): tensor of size N x 3
transform (tensor): transformation of size 4 x 4
'''
assert(transform.shape == (4, 4) and pointcloud.shape[-1] == 3)
pcl, is_numpy = to_pytorch(pointcloud, True)
transform = to_pytorch(transform)
# Transform point cloud to homogen coordinate system
pcl_hom = torch.cat([
pcl, torch.ones(pcl.shape[0], 1)
], dim=-1).transpose(1, 0)
# Apply transformation to point cloud
pcl_hom_transformed = transform @ pcl_hom
# Transform back to 3D coordinates
pcl_out = pcl_hom_transformed[:3].transpose(1, 0)
if is_numpy:
pcl_out = pcl_out.numpy()
return pcl_out
def transform_points_batch(p, transform):
''' Transform points tensor with given transform.
Args:
p (tensor): tensor of size B x N x 3
transform (tensor): transformation of size B x 4 x 4
'''
device = p.device
assert(transform.shape[1:] == (4, 4) and p.shape[-1]
== 3 and p.shape[0] == transform.shape[0])
# Transform points to homogen coordinates
pcl_hom = torch.cat([
p, torch.ones(p.shape[0], p.shape[1], 1).to(device)
], dim=-1).transpose(2, 1)
# Apply transformation
pcl_hom_transformed = transform @ pcl_hom
# Transform back to 3D coordinates
pcl_out = pcl_hom_transformed[:, :3].transpose(2, 1)
return pcl_out
def get_tensor_values(tensor, p, grid_sample=True, mode='nearest',
with_mask=False, squeeze_channel_dim=False):
'''
Returns values from tensor at given location p.
Args:
tensor (tensor): tensor of size B x C x H x W
p (tensor): position values scaled between [-1, 1] and
of size B x N x 2
grid_sample (boolean): whether to use grid sampling
mode (string): what mode to perform grid sampling in
with_mask (bool): whether to return the mask for invalid values
squeeze_channel_dim (bool): whether to squeeze the channel dimension
(only applicable to 1D data)
'''
p = to_pytorch(p)
tensor, is_numpy = to_pytorch(tensor, True)
batch_size, _, h, w = tensor.shape
if grid_sample:
p = p.unsqueeze(1)
values = torch.nn.functional.grid_sample(tensor, p, mode=mode)
values = values.squeeze(2)
values = values.permute(0, 2, 1)
else:
p[:, :, 0] = (p[:, :, 0] + 1) * (w) / 2
p[:, :, 1] = (p[:, :, 1] + 1) * (h) / 2
p = p.long()
values = tensor[torch.arange(batch_size).unsqueeze(-1), :, p[:, :, 1],
p[:, :, 0]]
if with_mask:
mask = get_mask(values)
if squeeze_channel_dim:
mask = mask.squeeze(-1)
if is_numpy:
mask = mask.numpy()
if squeeze_channel_dim:
values = values.squeeze(-1)
if is_numpy:
values = values.numpy()
if with_mask:
return values, mask
return values
def transform_to_world(pixels, depth, camera_mat, world_mat, scale_mat,
invert=True):
''' Transforms pixel positions p with given depth value d to world coordinates.
Args:
pixels (tensor): pixel tensor of size B x N x 2
depth (tensor): depth tensor of size B x N x 1
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
invert (bool): whether to invert matrices (default: true)
'''
assert(pixels.shape[-1] == 2)
# Convert to pytorch
pixels, is_numpy = to_pytorch(pixels, True)
depth = to_pytorch(depth)
camera_mat = to_pytorch(camera_mat)
world_mat = to_pytorch(world_mat)
scale_mat = to_pytorch(scale_mat)
# Invert camera matrices
if invert:
camera_mat = torch.inverse(camera_mat)
world_mat = torch.inverse(world_mat)
scale_mat = torch.inverse(scale_mat)
# Transform pixels to homogen coordinates
pixels = pixels.permute(0, 2, 1)
pixels = torch.cat([pixels, torch.ones_like(pixels)], dim=1)
# Project pixels into camera space
pixels[:, :3] = pixels[:, :3] * depth.permute(0, 2, 1)
# Transform pixels to world space
p_world = scale_mat @ world_mat @ camera_mat @ pixels
# Transform p_world back to 3D coordinates
p_world = p_world[:, :3].permute(0, 2, 1)
if is_numpy:
p_world = p_world.numpy()
return p_world
def transform_to_camera_space(p_world, camera_mat, world_mat, scale_mat):
''' Transforms world points to camera space.
Args:
p_world (tensor): world points tensor of size B x N x 3
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
'''
batch_size, n_p, _ = p_world.shape
device = p_world.device
# Transform world points to homogen coordinates
p_world = torch.cat([p_world, torch.ones(
batch_size, n_p, 1).to(device)], dim=-1).permute(0, 2, 1)
# Apply matrices to transform p_world to camera space
p_cam = camera_mat @ world_mat @ scale_mat @ p_world
# Transform points back to 3D coordinates
p_cam = p_cam[:, :3].permute(0, 2, 1)
return p_cam
def origin_to_world(n_points, camera_mat, world_mat, scale_mat, invert=True):
''' Transforms origin (camera location) to world coordinates.
Args:
n_points (int): how often the transformed origin is repeated in the
form (batch_size, n_points, 3)
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
invert (bool): whether to invert the matrices (default: true)
'''
batch_size = camera_mat.shape[0]
device = camera_mat.device
# Create origin in homogen coordinates
p = torch.zeros(batch_size, 4, n_points).to(device)
p[:, -1] = 1.
# Invert matrices
if invert:
camera_mat = torch.inverse(camera_mat)
world_mat = torch.inverse(world_mat)
scale_mat = torch.inverse(scale_mat)
# Apply transformation
p_world = scale_mat @ world_mat @ camera_mat @ p
# Transform points back to 3D coordinates
p_world = p_world[:, :3].permute(0, 2, 1)
return p_world
def image_points_to_world(image_points, camera_mat, world_mat, scale_mat,
invert=True):
''' Transforms points on image plane to world coordinates.
In contrast to transform_to_world, no depth value is needed as points on
the image plane have a fixed depth of 1.
Args:
image_points (tensor): image points tensor of size B x N x 2
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
invert (bool): whether to invert matrices (default: true)
'''
batch_size, n_pts, dim = image_points.shape
assert(dim == 2)
device = image_points.device
d_image = torch.ones(batch_size, n_pts, 1).to(device)
return transform_to_world(image_points, d_image, camera_mat, world_mat,
scale_mat, invert=invert)
def check_weights(params):
''' Checks weights for illegal values.
Args:
params (tensor): parameter tensor
'''
for k, v in params.items():
if torch.isnan(v).any():
logger_py.warn('NaN Values detected in model weight %s.' % k)
def check_tensor(tensor, tensorname='', input_tensor=None):
''' Checks tensor for illegal values.
Args:
tensor (tensor): tensor
tensorname (string): name of tensor
input_tensor (tensor): previous input
'''
if torch.isnan(tensor).any():
logger_py.warn('Tensor %s contains nan values.' % tensorname)
if input_tensor is not None:
logger_py.warn(f'Input was: {input_tensor}')
def get_prob_from_logits(logits):
''' Returns probabilities for logits
Args:
logits (tensor): logits
'''
odds = np.exp(logits)
probs = odds / (1 + odds)
return probs
def get_logits_from_prob(probs, eps=1e-4):
''' Returns logits for probabilities.
Args:
probs (tensor): probability tensor
eps (float): epsilon value for numerical stability
'''
probs = np.clip(probs, a_min=eps, a_max=1-eps)
logits = np.log(probs / (1 - probs))
return logits
def chamfer_distance(points1, points2, use_kdtree=True, give_id=False):
''' Returns the chamfer distance for the sets of points.
Args:
points1 (numpy array): first point set
points2 (numpy array): second point set
use_kdtree (bool): whether to use a kdtree
give_id (bool): whether to return the IDs of nearest points
'''
if use_kdtree:
return chamfer_distance_kdtree(points1, points2, give_id=give_id)
else:
return chamfer_distance_naive(points1, points2)
def chamfer_distance_naive(points1, points2):
''' Naive implementation of the Chamfer distance.
Args:
points1 (numpy array): first point set
points2 (numpy array): second point set
'''
assert(points1.size() == points2.size())
batch_size, T, _ = points1.size()
points1 = points1.view(batch_size, T, 1, 3)
points2 = points2.view(batch_size, 1, T, 3)
distances = (points1 - points2).pow(2).sum(-1)
chamfer1 = distances.min(dim=1)[0].mean(dim=1)
chamfer2 = distances.min(dim=2)[0].mean(dim=1)
chamfer = chamfer1 + chamfer2
return chamfer
def chamfer_distance_kdtree(points1, points2, give_id=False):
''' KD-tree based implementation of the Chamfer distance.
Args:
points1 (numpy array): first point set
points2 (numpy array): second point set
give_id (bool): whether to return the IDs of the nearest points
'''
# Points have size batch_size x T x 3
batch_size = points1.size(0)
# First convert points to numpy
points1_np = points1.detach().cpu().numpy()
points2_np = points2.detach().cpu().numpy()
# Get list of nearest neighbors indices
idx_nn_12, _ = get_nearest_neighbors_indices_batch(points1_np, points2_np)
idx_nn_12 = torch.LongTensor(idx_nn_12).to(points1.device)
# Expands it as batch_size x 1 x 3
idx_nn_12_expand = idx_nn_12.view(batch_size, -1, 1).expand_as(points1)
# Get list of nearest neighbors indices
idx_nn_21, _ = get_nearest_neighbors_indices_batch(points2_np, points1_np)
idx_nn_21 = torch.LongTensor(idx_nn_21).to(points1.device)
# Expands it as batch_size x T x 3
idx_nn_21_expand = idx_nn_21.view(batch_size, -1, 1).expand_as(points2)
# Compute nearest neighbors in points2 to points in points1
# points_12[i, j, k] = points2[i, idx_nn_12_expand[i, j, k], k]
points_12 = torch.gather(points2, dim=1, index=idx_nn_12_expand)
# Compute nearest neighbors in points1 to points in points2
# points_21[i, j, k] = points2[i, idx_nn_21_expand[i, j, k], k]
points_21 = torch.gather(points1, dim=1, index=idx_nn_21_expand)
# Compute chamfer distance
chamfer1 = (points1 - points_12).pow(2).sum(2).mean(1)
chamfer2 = (points2 - points_21).pow(2).sum(2).mean(1)
# Take sum
chamfer = chamfer1 + chamfer2
# If required, also return nearest neighbors
if give_id:
return chamfer1, chamfer2, idx_nn_12, idx_nn_21
return chamfer
def get_nearest_neighbors_indices_batch(points_src, points_tgt, k=1):
''' Returns the nearest neighbors for point sets batchwise.
Args:
points_src (numpy array): source points
points_tgt (numpy array): target points
k (int): number of nearest neighbors to return
'''
indices = []
distances = []
for (p1, p2) in zip(points_src, points_tgt):
kdtree = KDTree(p2)
dist, idx = kdtree.query(p1, k=k)
indices.append(idx)
distances.append(dist)
return indices, distances
def normalize_imagenet(x):
''' Normalize input images according to ImageNet standards.
Args:
x (tensor): input images
'''
x = x.clone()
x[:, 0] = (x[:, 0] - 0.485) / 0.229
x[:, 1] = (x[:, 1] - 0.456) / 0.224
x[:, 2] = (x[:, 2] - 0.406) / 0.225
return x
def make_3d_grid(bb_min, bb_max, shape):
''' Makes a 3D grid.
Args:
bb_min (tuple): bounding box minimum
bb_max (tuple): bounding box maximum
shape (tuple): output shape
'''
size = shape[0] * shape[1] * shape[2]
pxs = torch.linspace(bb_min[0], bb_max[0], shape[0])
pys = torch.linspace(bb_min[1], bb_max[1], shape[1])
pzs = torch.linspace(bb_min[2], bb_max[2], shape[2])
pxs = pxs.view(-1, 1, 1).expand(*shape).contiguous().view(size)
pys = pys.view(1, -1, 1).expand(*shape).contiguous().view(size)
pzs = pzs.view(1, 1, -1).expand(*shape).contiguous().view(size)
p = torch.stack([pxs, pys, pzs], dim=1)
return p
def get_occupancy_loss_points(pixels, camera_mat, world_mat, scale_mat,
depth_image=None, use_cube_intersection=True,
occupancy_random_normal=False,
depth_range=[0, 2.4]):
''' Returns 3D points for occupancy loss.
Args:
pixels (tensor): sampled pixels in range [-1, 1]
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
depth_image tensor): if not None, these depth values are used for
initialization (e.g. depth or visual hull depth)
use_cube_intersection (bool): whether to check unit cube intersection
occupancy_random_normal (bool): whether to sample from a Normal
distribution instead of a uniform one
depth_range (float): depth range; important when no cube
intersection is used
'''
device = pixels.device
batch_size, n_points, _ = pixels.shape
if use_cube_intersection:
_, d_cube_intersection, mask_cube = \
intersect_camera_rays_with_unit_cube(
pixels, camera_mat, world_mat, scale_mat, padding=0.,
use_ray_length_as_depth=False)
d_cube = d_cube_intersection[mask_cube]
d_occupancy = torch.rand(batch_size, n_points).to(device) * depth_range[1]
if use_cube_intersection:
d_occupancy[mask_cube] = d_cube[:, 0] + \
torch.rand(d_cube.shape[0]).to(
device) * (d_cube[:, 1] - d_cube[:, 0])
if occupancy_random_normal:
d_occupancy = torch.randn(batch_size, n_points).to(device) \
* (depth_range[1] / 8) + depth_range[1] / 2
if use_cube_intersection:
mean_cube = d_cube.sum(-1) / 2
std_cube = (d_cube[:, 1] - d_cube[:, 0]) / 8
d_occupancy[mask_cube] = mean_cube + \
torch.randn(mean_cube.shape[0]).to(device) * std_cube
if depth_image is not None:
depth_gt, mask_gt_depth = get_tensor_values(
depth_image, pixels, squeeze_channel_dim=True, with_mask=True)
d_occupancy[mask_gt_depth] = depth_gt[mask_gt_depth]
p_occupancy = transform_to_world(pixels, d_occupancy.unsqueeze(-1),
camera_mat, world_mat, scale_mat)
return p_occupancy
def get_freespace_loss_points(pixels, camera_mat, world_mat, scale_mat,
use_cube_intersection=True, depth_range=[0, 2.4]):
''' Returns 3D points for freespace loss.
Args:
pixels (tensor): sampled pixels in range [-1, 1]
camera_mat (tensor): camera matrix
world_mat (tensor): world matrix
scale_mat (tensor): scale matrix
use_cube_intersection (bool): whether to check unit cube intersection
depth_range (float): depth range; important when no cube
intersection is used
'''
device = pixels.device
batch_size, n_points, _ = pixels.shape
d_freespace = torch.rand(batch_size, n_points).to(device) * \
depth_range[1]
if use_cube_intersection:
_, d_cube_intersection, mask_cube = \
intersect_camera_rays_with_unit_cube(
pixels, camera_mat, world_mat, scale_mat,
use_ray_length_as_depth=False)
d_cube = d_cube_intersection[mask_cube]
d_freespace[mask_cube] = d_cube[:, 0] + \
torch.rand(d_cube.shape[0]).to(
device) * (d_cube[:, 1] - d_cube[:, 0])
p_freespace = transform_to_world(
pixels, d_freespace.unsqueeze(-1), camera_mat, world_mat, scale_mat)
return p_freespace
def normalize_tensor(tensor, min_norm=1e-5, feat_dim=-1):
''' Normalizes the tensor.
Args:
tensor (tensor): tensor
min_norm (float): minimum norm for numerical stability
feat_dim (int): feature dimension in tensor (default: -1)
'''
norm_tensor = torch.clamp(torch.norm(tensor, dim=feat_dim, keepdim=True),
min=min_norm)
normed_tensor = tensor / norm_tensor
return normed_tensor