Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import os | |
import cv2 | |
import time | |
import json | |
import torch | |
import subprocess | |
import numpy as np | |
import os.path as osp | |
# from pytube import YouTube | |
from collections import OrderedDict | |
from utils.smooth_bbox import get_smooth_bbox_params, get_all_bbox_params | |
from datasets.data_utils.img_utils import get_single_image_crop_demo | |
from utils.geometry import rotation_matrix_to_angle_axis | |
def preprocess_video(video, joints2d, bboxes, frames, scale=1.0, crop_size=224): | |
""" | |
Read video, do normalize and crop it according to the bounding box. | |
If there are bounding box annotations, use them to crop the image. | |
If no bounding box is specified but openpose detections are available, use them to get the bounding box. | |
:param video (ndarray): input video | |
:param joints2d (ndarray, NxJx3): openpose detections | |
:param bboxes (ndarray, Nx5): bbox detections | |
:param scale (float): bbox crop scaling factor | |
:param crop_size (int): crop width and height | |
:return: cropped video, cropped and normalized video, modified bboxes, modified joints2d | |
""" | |
if joints2d is not None: | |
bboxes, time_pt1, time_pt2 = get_all_bbox_params(joints2d, vis_thresh=0.3) | |
bboxes[:,2:] = 150. / bboxes[:,2:] | |
bboxes = np.stack([bboxes[:,0], bboxes[:,1], bboxes[:,2], bboxes[:,2]]).T | |
video = video[time_pt1:time_pt2] | |
joints2d = joints2d[time_pt1:time_pt2] | |
frames = frames[time_pt1:time_pt2] | |
shape = video.shape | |
temp_video = np.zeros((shape[0], crop_size, crop_size, shape[-1])) | |
norm_video = torch.zeros(shape[0], shape[-1], crop_size, crop_size) | |
for idx in range(video.shape[0]): | |
img = video[idx] | |
bbox = bboxes[idx] | |
j2d = joints2d[idx] if joints2d is not None else None | |
norm_img, raw_img, kp_2d = get_single_image_crop_demo( | |
img, | |
bbox, | |
kp_2d=j2d, | |
scale=scale, | |
crop_size=crop_size) | |
if joints2d is not None: | |
joints2d[idx] = kp_2d | |
temp_video[idx] = raw_img | |
norm_video[idx] = norm_img | |
temp_video = temp_video.astype(np.uint8) | |
return temp_video, norm_video, bboxes, joints2d, frames | |
def download_youtube_clip(url, download_folder): | |
return YouTube(url).streams.first().download(output_path=download_folder) | |
def smplify_runner( | |
pred_rotmat, | |
pred_betas, | |
pred_cam, | |
j2d, | |
device, | |
batch_size, | |
lr=1.0, | |
opt_steps=1, | |
use_lbfgs=True, | |
pose2aa=True | |
): | |
smplify = TemporalSMPLify( | |
step_size=lr, | |
batch_size=batch_size, | |
num_iters=opt_steps, | |
focal_length=5000., | |
use_lbfgs=use_lbfgs, | |
device=device, | |
# max_iter=10, | |
) | |
# Convert predicted rotation matrices to axis-angle | |
if pose2aa: | |
pred_pose = rotation_matrix_to_angle_axis(pred_rotmat.detach()).reshape(batch_size, -1) | |
else: | |
pred_pose = pred_rotmat | |
# Calculate camera parameters for smplify | |
pred_cam_t = torch.stack([ | |
pred_cam[:, 1], pred_cam[:, 2], | |
2 * 5000 / (224 * pred_cam[:, 0] + 1e-9) | |
], dim=-1) | |
gt_keypoints_2d_orig = j2d | |
# Before running compute reprojection error of the network | |
opt_joint_loss = smplify.get_fitting_loss( | |
pred_pose.detach(), pred_betas.detach(), | |
pred_cam_t.detach(), | |
0.5 * 224 * torch.ones(batch_size, 2, device=device), | |
gt_keypoints_2d_orig).mean(dim=-1) | |
best_prediction_id = torch.argmin(opt_joint_loss).item() | |
pred_betas = pred_betas[best_prediction_id].unsqueeze(0) | |
# pred_betas = pred_betas[best_prediction_id:best_prediction_id+2] # .unsqueeze(0) | |
# top5_best_idxs = torch.topk(opt_joint_loss, 5, largest=False)[1] | |
# breakpoint() | |
start = time.time() | |
# Run SMPLify optimization initialized from the network prediction | |
# new_opt_vertices, new_opt_joints, \ | |
# new_opt_pose, new_opt_betas, \ | |
# new_opt_cam_t, \ | |
output, new_opt_joint_loss = smplify( | |
pred_pose.detach(), pred_betas.detach(), | |
pred_cam_t.detach(), | |
0.5 * 224 * torch.ones(batch_size, 2, device=device), | |
gt_keypoints_2d_orig, | |
) | |
new_opt_joint_loss = new_opt_joint_loss.mean(dim=-1) | |
# smplify_time = time.time() - start | |
# print(f'Smplify time: {smplify_time}') | |
# Will update the dictionary for the examples where the new loss is less than the current one | |
update = (new_opt_joint_loss < opt_joint_loss) | |
new_opt_vertices = output['verts'] | |
new_opt_cam_t = output['theta'][:,:3] | |
new_opt_pose = output['theta'][:,3:75] | |
new_opt_betas = output['theta'][:,75:] | |
new_opt_joints3d = output['kp_3d'] | |
return_val = [ | |
update, new_opt_vertices.cpu(), new_opt_cam_t.cpu(), | |
new_opt_pose.cpu(), new_opt_betas.cpu(), new_opt_joints3d.cpu(), | |
new_opt_joint_loss, opt_joint_loss, | |
] | |
return return_val | |
def trim_videos(filename, start_time, end_time, output_filename): | |
command = ['ffmpeg', | |
'-i', '"%s"' % filename, | |
'-ss', str(start_time), | |
'-t', str(end_time - start_time), | |
'-c:v', 'libx264', '-c:a', 'copy', | |
'-threads', '1', | |
'-loglevel', 'panic', | |
'"%s"' % output_filename] | |
# command = ' '.join(command) | |
subprocess.call(command) | |
def video_to_images(vid_file, img_folder=None, return_info=False): | |
if img_folder is None: | |
img_folder = osp.join(osp.expanduser('~'), 'tmp', osp.basename(vid_file).replace('.', '_')) | |
# img_folder = osp.join('/tmp', osp.basename(vid_file).replace('.', '_')) | |
print(img_folder) | |
os.makedirs(img_folder, exist_ok=True) | |
command = ['ffmpeg', | |
'-i', vid_file, | |
'-f', 'image2', | |
'-v', 'error', | |
f'{img_folder}/%06d.png'] | |
print(f'Running \"{" ".join(command)}\"') | |
try: | |
subprocess.call(command) | |
except: | |
subprocess.call(f'{" ".join(command)}', shell=True) | |
print(f'Images saved to \"{img_folder}\"') | |
img_shape = cv2.imread(osp.join(img_folder, '000001.png')).shape | |
if return_info: | |
return img_folder, len(os.listdir(img_folder)), img_shape | |
else: | |
return img_folder | |
def download_url(url, outdir): | |
print(f'Downloading files from {url}') | |
cmd = ['wget', '-c', url, '-P', outdir] | |
subprocess.call(cmd) | |
def download_ckpt(outdir='data/vibe_data', use_3dpw=False): | |
os.makedirs(outdir, exist_ok=True) | |
if use_3dpw: | |
ckpt_file = 'data/vibe_data/vibe_model_w_3dpw.pth.tar' | |
url = 'https://www.dropbox.com/s/41ozgqorcp095ja/vibe_model_w_3dpw.pth.tar' | |
if not os.path.isfile(ckpt_file): | |
download_url(url=url, outdir=outdir) | |
else: | |
ckpt_file = 'data/vibe_data/vibe_model_wo_3dpw.pth.tar' | |
url = 'https://www.dropbox.com/s/amj2p8bmf6g56k6/vibe_model_wo_3dpw.pth.tar' | |
if not os.path.isfile(ckpt_file): | |
download_url(url=url, outdir=outdir) | |
return ckpt_file | |
def images_to_video(img_folder, output_vid_file): | |
os.makedirs(img_folder, exist_ok=True) | |
command = [ | |
'ffmpeg', '-y', '-threads', '16', '-i', f'{img_folder}/%06d.png', '-profile:v', 'baseline', | |
'-level', '3.0', '-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-an', '-v', 'error', output_vid_file, | |
] | |
print(f'Running \"{" ".join(command)}\"') | |
try: | |
subprocess.call(command) | |
except: | |
subprocess.call(f'{" ".join(command)}', shell=True) | |
def convert_crop_cam_to_orig_img(cam, bbox, img_width, img_height): | |
''' | |
Convert predicted camera from cropped image coordinates | |
to original image coordinates | |
:param cam (ndarray, shape=(3,)): weak perspective camera in cropped img coordinates | |
:param bbox (ndarray, shape=(4,)): bbox coordinates (c_x, c_y, h) | |
:param img_width (int): original image width | |
:param img_height (int): original image height | |
:return: | |
''' | |
cx, cy, h = bbox[:,0], bbox[:,1], bbox[:,2] | |
hw, hh = img_width / 2., img_height / 2. | |
sx = cam[:,0] * (1. / (img_width / h)) | |
sy = cam[:,0] * (1. / (img_height / h)) | |
tx = ((cx - hw) / hw / sx) + cam[:,1] | |
ty = ((cy - hh) / hh / sy) + cam[:,2] | |
orig_cam = np.stack([sx, sy, tx, ty]).T | |
return orig_cam | |
def prepare_rendering_results(results_dict, nframes): | |
frame_results = [{} for _ in range(nframes)] | |
for person_id, person_data in results_dict.items(): | |
for idx, frame_id in enumerate(person_data['frame_ids']): | |
frame_results[frame_id][person_id] = { | |
'verts': person_data['verts'][idx], | |
'smplx_verts': person_data['smplx_verts'][idx] if 'smplx_verts' in person_data else None, | |
'cam': person_data['orig_cam'][idx], | |
'cam_t': person_data['orig_cam_t'][idx] if 'orig_cam_t' in person_data else None, | |
# 'cam': person_data['pred_cam'][idx], | |
} | |
# naive depth ordering based on the scale of the weak perspective camera | |
for frame_id, frame_data in enumerate(frame_results): | |
# sort based on y-scale of the cam in original image coords | |
sort_idx = np.argsort([v['cam'][1] for k,v in frame_data.items()]) | |
frame_results[frame_id] = OrderedDict( | |
{list(frame_data.keys())[i]:frame_data[list(frame_data.keys())[i]] for i in sort_idx} | |
) | |
return frame_results | |