ECON / lib /pymafx /utils /densepose_methods.py
Yuliang's picture
init
da48dbe
raw
history blame
5.63 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import copy
import cv2
from scipy.io import loadmat
import scipy.spatial.distance
import os
class DensePoseMethods:
def __init__(self):
#
ALP_UV = loadmat(os.path.join('./data/UV_data', 'UV_Processed.mat'))
self.FaceIndices = np.array(ALP_UV['All_FaceIndices']).squeeze()
self.FacesDensePose = ALP_UV['All_Faces'] - 1
self.U_norm = ALP_UV['All_U_norm'].squeeze()
self.V_norm = ALP_UV['All_V_norm'].squeeze()
self.All_vertices = ALP_UV['All_vertices'][0]
## Info to compute symmetries.
self.SemanticMaskSymmetries = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14]
self.Index_Symmetry_List = [1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24,
23];
UV_symmetry_filename = os.path.join('./data/UV_data', 'UV_symmetry_transforms.mat')
self.UV_symmetry_transformations = loadmat(UV_symmetry_filename)
def get_symmetric_densepose(self, I, U, V, x, y, Mask):
### This is a function to get the mirror symmetric UV labels.
Labels_sym = np.zeros(I.shape)
U_sym = np.zeros(U.shape)
V_sym = np.zeros(V.shape)
###
for i in (range(24)):
if i + 1 in I:
Labels_sym[I == (i + 1)] = self.Index_Symmetry_List[i]
jj = np.where(I == (i + 1))
###
U_loc = (U[jj] * 255).astype(np.int64)
V_loc = (V[jj] * 255).astype(np.int64)
###
V_sym[jj] = self.UV_symmetry_transformations['V_transforms'][0, i][V_loc, U_loc]
U_sym[jj] = self.UV_symmetry_transformations['U_transforms'][0, i][V_loc, U_loc]
##
Mask_flip = np.fliplr(Mask)
Mask_flipped = np.zeros(Mask.shape)
#
for i in (range(14)):
Mask_flipped[Mask_flip == (i + 1)] = self.SemanticMaskSymmetries[i + 1]
#
[y_max, x_max] = Mask_flip.shape
y_sym = y
x_sym = x_max - x
#
return Labels_sym, U_sym, V_sym, x_sym, y_sym, Mask_flipped
def barycentric_coordinates_exists(self, P0, P1, P2, P):
u = P1 - P0
v = P2 - P0
w = P - P0
#
vCrossW = np.cross(v, w)
vCrossU = np.cross(v, u)
if (np.dot(vCrossW, vCrossU) < 0):
return False;
#
uCrossW = np.cross(u, w)
uCrossV = np.cross(u, v)
#
if (np.dot(uCrossW, uCrossV) < 0):
return False;
#
denom = np.sqrt((uCrossV ** 2).sum())
r = np.sqrt((vCrossW ** 2).sum()) / denom
t = np.sqrt((uCrossW ** 2).sum()) / denom
#
return ((r <= 1) & (t <= 1) & (r + t <= 1))
def barycentric_coordinates(self, P0, P1, P2, P):
u = P1 - P0
v = P2 - P0
w = P - P0
#
vCrossW = np.cross(v, w)
vCrossU = np.cross(v, u)
#
uCrossW = np.cross(u, w)
uCrossV = np.cross(u, v)
#
denom = np.sqrt((uCrossV ** 2).sum())
r = np.sqrt((vCrossW ** 2).sum()) / denom
t = np.sqrt((uCrossW ** 2).sum()) / denom
#
return (1 - (r + t), r, t)
def IUV2FBC(self, I_point, U_point, V_point):
P = [U_point, V_point, 0]
FaceIndicesNow = np.where(self.FaceIndices == I_point)
FacesNow = self.FacesDensePose[FaceIndicesNow]
#
P_0 = np.vstack((self.U_norm[FacesNow][:, 0], self.V_norm[FacesNow][:, 0],
np.zeros(self.U_norm[FacesNow][:, 0].shape))).transpose()
P_1 = np.vstack((self.U_norm[FacesNow][:, 1], self.V_norm[FacesNow][:, 1],
np.zeros(self.U_norm[FacesNow][:, 1].shape))).transpose()
P_2 = np.vstack((self.U_norm[FacesNow][:, 2], self.V_norm[FacesNow][:, 2],
np.zeros(self.U_norm[FacesNow][:, 2].shape))).transpose()
#
for i, [P0, P1, P2] in enumerate(zip(P_0, P_1, P_2)):
if (self.barycentric_coordinates_exists(P0, P1, P2, P)):
[bc1, bc2, bc3] = self.barycentric_coordinates(P0, P1, P2, P)
return (FaceIndicesNow[0][i], bc1, bc2, bc3)
#
# If the found UV is not inside any faces, select the vertex that is closest!
#
D1 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :], P_0[:, 0:2]).squeeze()
D2 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :], P_1[:, 0:2]).squeeze()
D3 = scipy.spatial.distance.cdist(np.array([U_point, V_point])[np.newaxis, :], P_2[:, 0:2]).squeeze()
#
minD1 = D1.min()
minD2 = D2.min()
minD3 = D3.min()
#
if ((minD1 < minD2) & (minD1 < minD3)):
return (FaceIndicesNow[0][np.argmin(D1)], 1., 0., 0.)
elif ((minD2 < minD1) & (minD2 < minD3)):
return (FaceIndicesNow[0][np.argmin(D2)], 0., 1., 0.)
else:
return (FaceIndicesNow[0][np.argmin(D3)], 0., 0., 1.)
def FBC2PointOnSurface(self, FaceIndex, bc1, bc2, bc3, Vertices):
##
Vert_indices = self.All_vertices[self.FacesDensePose[FaceIndex]] - 1
##
p = Vertices[Vert_indices[0], :] * bc1 + \
Vertices[Vert_indices[1], :] * bc2 + \
Vertices[Vert_indices[2], :] * bc3
##
return (p)