ECON / lib /pymafx /utils /imutils.py
Yuliang's picture
init
da48dbe
raw
history blame
10 kB
"""
This file contains functions that are used to perform data augmentation.
"""
import torch
import numpy as np
import cv2
import skimage.transform
from PIL import Image
from lib.pymafx.core import constants
def get_transform(center, scale, res, rot=0):
"""Generate transformation matrix."""
h = 200 * scale
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
t[2, 2] = 1
if not rot == 0:
t = np.dot(get_rot_transf(res, rot),t)
return t
def get_rot_transf(res, rot):
"""Generate rotation transformation matrix."""
if rot == 0:
return np.identity(3)
rot = -rot # To match direction of rotation from cropping
rot_mat = np.zeros((3,3))
rot_rad = rot * np.pi / 180
sn,cs = np.sin(rot_rad), np.cos(rot_rad)
rot_mat[0,:2] = [cs, -sn]
rot_mat[1,:2] = [sn, cs]
rot_mat[2,2] = 1
# Need to rotate around center
t_mat = np.eye(3)
t_mat[0,2] = -res[1]/2
t_mat[1,2] = -res[0]/2
t_inv = t_mat.copy()
t_inv[:2,2] *= -1
rot_transf = np.dot(t_inv,np.dot(rot_mat,t_mat))
return rot_transf
def transform(pt, center, scale, res, invert=0, rot=0):
"""Transform pixel location to different reference."""
t = get_transform(center, scale, res, rot=rot)
if invert:
t = np.linalg.inv(t)
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
new_pt = np.dot(t, new_pt)
return new_pt[:2].astype(int) + 1
def transform_pts(coords, center, scale, res, invert=0, rot=0):
"""Transform coordinates (N x 2) to different reference."""
new_coords = coords.copy()
for p in range(coords.shape[0]):
new_coords[p, 0:2] = transform(coords[p, 0:2], center, scale, res, invert, rot)
return new_coords
def crop(img, center, scale, res, rot=0):
"""Crop image according to the supplied bounding box."""
# Upper left point
ul = np.array(transform([1, 1], center, scale, res, invert=1))-1
# Bottom right point
br = np.array(transform([res[0]+1,
res[1]+1], center, scale, res, invert=1))-1
# Padding so that when rotated proper amount of context is included
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
if not rot == 0:
ul -= pad
br += pad
new_shape = [br[1] - ul[1], br[0] - ul[0]]
if len(img.shape) > 2:
new_shape += [img.shape[2]]
new_img = np.zeros(new_shape)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(len(img[0]), br[0])
old_y = max(0, ul[1]), min(len(img), br[1])
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1],
old_x[0]:old_x[1]]
if not rot == 0:
# Remove padding
new_img = skimage.transform.rotate(new_img, rot).astype(np.uint8)
new_img = new_img[pad:-pad, pad:-pad]
new_img_resized = np.array(Image.fromarray(new_img.astype(np.uint8)).resize(res))
return new_img_resized, new_img, new_shape
def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True):
"""'Undo' the image cropping/resizing.
This function is used when evaluating mask/part segmentation.
"""
res = img.shape[:2]
# Upper left point
ul = np.array(transform([1, 1], center, scale, res, invert=1))-1
# Bottom right point
br = np.array(transform([res[0]+1,res[1]+1], center, scale, res, invert=1))-1
# size of cropped image
crop_shape = [br[1] - ul[1], br[0] - ul[0]]
new_shape = [br[1] - ul[1], br[0] - ul[0]]
if len(img.shape) > 2:
new_shape += [img.shape[2]]
new_img = np.zeros(orig_shape, dtype=np.uint8)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(orig_shape[1], br[0])
old_y = max(0, ul[1]), min(orig_shape[0], br[1])
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape))
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
return new_img
def rot_aa(aa, rot):
"""Rotate axis angle parameters."""
# pose parameters
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
[0, 0, 1]])
# find the rotation of the body in camera frame
per_rdg, _ = cv2.Rodrigues(aa)
# apply the global rotation to the global orientation
resrot, _ = cv2.Rodrigues(np.dot(R,per_rdg))
aa = (resrot.T)[0]
return aa
def flip_img(img):
"""Flip rgb images or masks.
channels come last, e.g. (256,256,3).
"""
img = np.fliplr(img)
return img
def flip_kp(kp, is_smpl=False, type='body'):
"""Flip keypoints."""
assert type in ['body', 'hand', 'face', 'feet']
if type == 'body':
if len(kp) == 24:
if is_smpl:
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM
else:
flipped_parts = constants.J24_FLIP_PERM
elif len(kp) == 49:
if is_smpl:
flipped_parts = constants.SMPL_J49_FLIP_PERM
else:
flipped_parts = constants.J49_FLIP_PERM
elif type == 'hand':
if len(kp) == 21:
flipped_parts = constants.SINGLE_HAND_FLIP_PERM
elif len(kp) == 42:
flipped_parts = constants.LRHAND_FLIP_PERM
elif type == 'face':
flipped_parts = constants.FACE_FLIP_PERM
elif type == 'feet':
flipped_parts = constants.FEEF_FLIP_PERM
kp = kp[flipped_parts]
kp[:,0] = - kp[:,0]
return kp
def flip_pose(pose):
"""Flip pose.
The flipping is based on SMPL parameters.
"""
flipped_parts = constants.SMPL_POSE_FLIP_PERM
pose = pose[flipped_parts]
# we also negate the second and the third dimension of the axis-angle
pose[1::3] = -pose[1::3]
pose[2::3] = -pose[2::3]
return pose
def flip_aa(pose):
"""Flip aa.
"""
# we also negate the second and the third dimension of the axis-angle
if len(pose.shape) == 1:
pose[1::3] = -pose[1::3]
pose[2::3] = -pose[2::3]
elif len(pose.shape) == 2:
pose[:, 1::3] = -pose[:, 1::3]
pose[:, 2::3] = -pose[:, 2::3]
else:
raise NotImplementedError
return pose
def normalize_2d_kp(kp_2d, crop_size=224, inv=False):
# Normalize keypoints between -1, 1
if not inv:
ratio = 1.0 / crop_size
kp_2d = 2.0 * kp_2d * ratio - 1.0
else:
ratio = 1.0 / crop_size
kp_2d = (kp_2d + 1.0)/(2*ratio)
return kp_2d
def j2d_processing(kp, transf):
"""Process gt 2D keypoints and apply transforms."""
# nparts = kp.shape[1]
bs, npart = kp.shape[:2]
kp_pad = torch.cat([kp, torch.ones((bs, npart, 1)).to(kp)], dim=-1)
kp_new = torch.bmm(transf, kp_pad.transpose(1, 2))
kp_new = kp_new.transpose(1, 2)
kp_new[:, :, :-1] = 2.*kp_new[:, :, :-1] / constants.IMG_RES - 1.
return kp_new[:, :, :2]
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None):
'''
param joints: [num_joints, 3]
param joints_vis: [num_joints, 3]
return: target, target_weight(1: visible, 0: invisible)
'''
num_joints = joints.shape[0]
device = joints.device
cur_device = torch.device(device.type, device.index)
if not hasattr(heatmap_size, '__len__'):
# width height
heatmap_size = [heatmap_size, heatmap_size]
assert len(heatmap_size) == 2
target_weight = np.ones((num_joints, 1), dtype=np.float32)
if joints_vis is not None:
target_weight[:, 0] = joints_vis[:, 0]
target = torch.zeros((num_joints,
heatmap_size[1],
heatmap_size[0]),
dtype=torch.float32,
device=cur_device)
tmp_size = sigma * 3
for joint_id in range(num_joints):
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5)
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \
or br[0] < 0 or br[1] < 0:
# If not, just return the image as is
target_weight[joint_id] = 0
continue
# # Generate gaussian
size = 2 * tmp_size + 1
# x = np.arange(0, size, 1, np.float32)
# y = x[:, np.newaxis]
# x0 = y0 = size // 2
# # The gaussian is not normalized, we want the center value to equal 1
# g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
# g = torch.from_numpy(g.astype(np.float32))
x = torch.arange(0, size, dtype=torch.float32, device=cur_device)
y = x.unsqueeze(-1)
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
g = torch.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], heatmap_size[0])
img_y = max(0, ul[1]), min(br[1], heatmap_size[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return target, target_weight