Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import neural_renderer as nr | |
from core import path_config | |
from models import SMPL | |
class PartRenderer(): | |
"""Renderer used to render segmentation masks and part segmentations. | |
Internally it uses the Neural 3D Mesh Renderer | |
""" | |
def __init__(self, focal_length=5000., render_res=224): | |
# Parameters for rendering | |
self.focal_length = focal_length | |
self.render_res = render_res | |
# We use Neural 3D mesh renderer for rendering masks and part segmentations | |
self.neural_renderer = nr.Renderer(dist_coeffs=None, orig_size=self.render_res, | |
image_size=render_res, | |
light_intensity_ambient=1, | |
light_intensity_directional=0, | |
anti_aliasing=False) | |
self.faces = torch.from_numpy(SMPL(path_config.SMPL_MODEL_DIR).faces.astype(np.int32)).cuda() | |
textures = np.load(path_config.VERTEX_TEXTURE_FILE) | |
self.textures = torch.from_numpy(textures).cuda().float() | |
self.cube_parts = torch.cuda.FloatTensor(np.load(path_config.CUBE_PARTS_FILE)) | |
def get_parts(self, parts, mask): | |
"""Process renderer part image to get body part indices.""" | |
bn,c,h,w = parts.shape | |
mask = mask.view(-1,1) | |
parts_index = torch.floor(100*parts.permute(0,2,3,1).contiguous().view(-1,3)).long() | |
parts = self.cube_parts[parts_index[:,0], parts_index[:,1], parts_index[:,2], None] | |
parts *= mask | |
parts = parts.view(bn,h,w).long() | |
return parts | |
def __call__(self, vertices, camera): | |
"""Wrapper function for rendering process.""" | |
# Estimate camera parameters given a fixed focal length | |
cam_t = torch.stack([camera[:,1], camera[:,2], 2*self.focal_length/(self.render_res * camera[:,0] +1e-9)],dim=-1) | |
batch_size = vertices.shape[0] | |
K = torch.eye(3, device=vertices.device) | |
K[0,0] = self.focal_length | |
K[1,1] = self.focal_length | |
K[2,2] = 1 | |
K[0,2] = self.render_res / 2. | |
K[1,2] = self.render_res / 2. | |
K = K[None, :, :].expand(batch_size, -1, -1) | |
R = torch.eye(3, device=vertices.device)[None, :, :].expand(batch_size, -1, -1) | |
faces = self.faces[None, :, :].expand(batch_size, -1, -1) | |
parts, _, mask = self.neural_renderer(vertices, faces, textures=self.textures.expand(batch_size, -1, -1, -1, -1, -1), K=K, R=R, t=cam_t.unsqueeze(1)) | |
parts = self.get_parts(parts, mask) | |
return mask, parts |