Spaces:
Runtime error
Runtime error
# Written by Roy Tseng | |
# | |
# Based on: | |
# -------------------------------------------------------- | |
# Copyright (c) 2017-present, Facebook, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
############################################################################## | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from __future__ import unicode_literals | |
import cv2 | |
import numpy as np | |
import os | |
import pycocotools.mask as mask_util | |
import math | |
import torchvision | |
from .colormap import colormap | |
from .keypoints import get_keypoints | |
from .imutils import normalize_2d_kp | |
# Use a non-interactive backend | |
import matplotlib | |
matplotlib.use('Agg') | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Polygon | |
from mpl_toolkits.mplot3d import Axes3D | |
from skimage.transform import resize | |
plt.rcParams['pdf.fonttype'] = 42 # For editing in Adobe Illustrator | |
_GRAY = (218, 227, 218) | |
_GREEN = (18, 127, 15) | |
_WHITE = (255, 255, 255) | |
def get_colors(): | |
colors = { | |
'pink': np.array([197, 27, 125]), # L lower leg | |
'light_pink': np.array([233, 163, 201]), # L upper leg | |
'light_green': np.array([161, 215, 106]), # L lower arm | |
'green': np.array([77, 146, 33]), # L upper arm | |
'red': np.array([215, 48, 39]), # head | |
'light_red': np.array([252, 146, 114]), # head | |
'light_orange': np.array([252, 141, 89]), # chest | |
'purple': np.array([118, 42, 131]), # R lower leg | |
'light_purple': np.array([175, 141, 195]), # R upper | |
'light_blue': np.array([145, 191, 219]), # R lower arm | |
'blue': np.array([69, 117, 180]), # R upper arm | |
'gray': np.array([130, 130, 130]), # | |
'white': np.array([255, 255, 255]), # | |
} | |
return colors | |
def kp_connections(keypoints): | |
kp_lines = [ | |
[keypoints.index('left_eye'), keypoints.index('right_eye')], | |
[keypoints.index('left_eye'), keypoints.index('nose')], | |
[keypoints.index('right_eye'), keypoints.index('nose')], | |
[keypoints.index('right_eye'), keypoints.index('right_ear')], | |
[keypoints.index('left_eye'), keypoints.index('left_ear')], | |
[keypoints.index('right_shoulder'), keypoints.index('right_elbow')], | |
[keypoints.index('right_elbow'), keypoints.index('right_wrist')], | |
[keypoints.index('left_shoulder'), keypoints.index('left_elbow')], | |
[keypoints.index('left_elbow'), keypoints.index('left_wrist')], | |
[keypoints.index('right_hip'), keypoints.index('right_knee')], | |
[keypoints.index('right_knee'), keypoints.index('right_ankle')], | |
[keypoints.index('left_hip'), keypoints.index('left_knee')], | |
[keypoints.index('left_knee'), keypoints.index('left_ankle')], | |
[keypoints.index('right_shoulder'), keypoints.index('left_shoulder')], | |
[keypoints.index('right_hip'), keypoints.index('left_hip')], | |
] | |
return kp_lines | |
def convert_from_cls_format(cls_boxes, cls_segms, cls_keyps): | |
"""Convert from the class boxes/segms/keyps format generated by the testing | |
code. | |
""" | |
box_list = [b for b in cls_boxes if len(b) > 0] | |
if len(box_list) > 0: | |
boxes = np.concatenate(box_list) | |
else: | |
boxes = None | |
if cls_segms is not None: | |
segms = [s for slist in cls_segms for s in slist] | |
else: | |
segms = None | |
if cls_keyps is not None: | |
keyps = [k for klist in cls_keyps for k in klist] | |
else: | |
keyps = None | |
classes = [] | |
for j in range(len(cls_boxes)): | |
classes += [j] * len(cls_boxes[j]) | |
return boxes, segms, keyps, classes | |
def vis_bbox_opencv(img, bbox, thick=1): | |
"""Visualizes a bounding box.""" | |
(x0, y0, w, h) = bbox | |
x1, y1 = int(x0 + w), int(y0 + h) | |
x0, y0 = int(x0), int(y0) | |
cv2.rectangle(img, (x0, y0), (x1, y1), _GREEN, thickness=thick) | |
return img | |
def get_class_string(class_index, score, dataset): | |
class_text = dataset.classes[class_index] if dataset is not None else \ | |
'id{:d}'.format(class_index) | |
return class_text + ' {:0.2f}'.format(score).lstrip('0') | |
def vis_one_image( | |
im, im_name, output_dir, boxes, segms=None, keypoints=None, body_uv=None, thresh=0.9, | |
kp_thresh=2, dpi=200, box_alpha=0.0, dataset=None, show_class=False, | |
ext='pdf'): | |
"""Visual debugging of detections.""" | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
if isinstance(boxes, list): | |
boxes, segms, keypoints, classes = convert_from_cls_format( | |
boxes, segms, keypoints) | |
if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh: | |
return | |
if segms is not None: | |
masks = mask_util.decode(segms) | |
color_list = colormap(rgb=True) / 255 | |
dataset_keypoints, _ = get_keypoints() | |
kp_lines = kp_connections(dataset_keypoints) | |
cmap = plt.get_cmap('rainbow') | |
colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)] | |
fig = plt.figure(frameon=False) | |
fig.set_size_inches(im.shape[1] / dpi, im.shape[0] / dpi) | |
ax = plt.Axes(fig, [0., 0., 1., 1.]) | |
ax.axis('off') | |
fig.add_axes(ax) | |
ax.imshow(im) | |
# Display in largest to smallest order to reduce occlusion | |
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) | |
sorted_inds = np.argsort(-areas) | |
mask_color_id = 0 | |
for i in sorted_inds: | |
bbox = boxes[i, :4] | |
score = boxes[i, -1] | |
if score < thresh: | |
continue | |
print(dataset.classes[classes[i]], score) | |
# show box (off by default, box_alpha=0.0) | |
ax.add_patch( | |
plt.Rectangle((bbox[0], bbox[1]), | |
bbox[2] - bbox[0], | |
bbox[3] - bbox[1], | |
fill=False, edgecolor='g', | |
linewidth=0.5, alpha=box_alpha)) | |
if show_class: | |
ax.text( | |
bbox[0], bbox[1] - 2, | |
get_class_string(classes[i], score, dataset), | |
fontsize=3, | |
family='serif', | |
bbox=dict( | |
facecolor='g', alpha=0.4, pad=0, edgecolor='none'), | |
color='white') | |
# show mask | |
if segms is not None and len(segms) > i: | |
img = np.ones(im.shape) | |
color_mask = color_list[mask_color_id % len(color_list), 0:3] | |
mask_color_id += 1 | |
w_ratio = .4 | |
for c in range(3): | |
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio | |
for c in range(3): | |
img[:, :, c] = color_mask[c] | |
e = masks[:, :, i] | |
_, contour, hier = cv2.findContours( | |
e.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) | |
for c in contour: | |
polygon = Polygon( | |
c.reshape((-1, 2)), | |
fill=True, facecolor=color_mask, | |
edgecolor='w', linewidth=1.2, | |
alpha=0.5) | |
ax.add_patch(polygon) | |
# show keypoints | |
if keypoints is not None and len(keypoints) > i: | |
kps = keypoints[i] | |
plt.autoscale(False) | |
for l in range(len(kp_lines)): | |
i1 = kp_lines[l][0] | |
i2 = kp_lines[l][1] | |
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: | |
x = [kps[0, i1], kps[0, i2]] | |
y = [kps[1, i1], kps[1, i2]] | |
line = ax.plot(x, y) | |
plt.setp(line, color=colors[l], linewidth=1.0, alpha=0.7) | |
if kps[2, i1] > kp_thresh: | |
ax.plot( | |
kps[0, i1], kps[1, i1], '.', color=colors[l], | |
markersize=3.0, alpha=0.7) | |
if kps[2, i2] > kp_thresh: | |
ax.plot( | |
kps[0, i2], kps[1, i2], '.', color=colors[l], | |
markersize=3.0, alpha=0.7) | |
# add mid shoulder / mid hip for better visualization | |
mid_shoulder = ( | |
kps[:2, dataset_keypoints.index('right_shoulder')] + | |
kps[:2, dataset_keypoints.index('left_shoulder')]) / 2.0 | |
sc_mid_shoulder = np.minimum( | |
kps[2, dataset_keypoints.index('right_shoulder')], | |
kps[2, dataset_keypoints.index('left_shoulder')]) | |
mid_hip = ( | |
kps[:2, dataset_keypoints.index('right_hip')] + | |
kps[:2, dataset_keypoints.index('left_hip')]) / 2.0 | |
sc_mid_hip = np.minimum( | |
kps[2, dataset_keypoints.index('right_hip')], | |
kps[2, dataset_keypoints.index('left_hip')]) | |
if (sc_mid_shoulder > kp_thresh and | |
kps[2, dataset_keypoints.index('nose')] > kp_thresh): | |
x = [mid_shoulder[0], kps[0, dataset_keypoints.index('nose')]] | |
y = [mid_shoulder[1], kps[1, dataset_keypoints.index('nose')]] | |
line = ax.plot(x, y) | |
plt.setp( | |
line, color=colors[len(kp_lines)], linewidth=1.0, alpha=0.7) | |
if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh: | |
x = [mid_shoulder[0], mid_hip[0]] | |
y = [mid_shoulder[1], mid_hip[1]] | |
line = ax.plot(x, y) | |
plt.setp( | |
line, color=colors[len(kp_lines) + 1], linewidth=1.0, | |
alpha=0.7) | |
# DensePose Visualization Starts!! | |
## Get full IUV image out | |
if body_uv is not None and len(body_uv) > 1: | |
IUV_fields = body_uv[1] | |
# | |
All_Coords = np.zeros(im.shape) | |
All_inds = np.zeros([im.shape[0], im.shape[1]]) | |
K = 26 | |
## | |
inds = np.argsort(boxes[:, 4]) | |
## | |
for i, ind in enumerate(inds): | |
entry = boxes[ind, :] | |
if entry[4] > 0.65: | |
entry = entry[0:4].astype(int) | |
#### | |
output = IUV_fields[ind] | |
#### | |
All_Coords_Old = All_Coords[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2], :] | |
All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2, 0])[All_Coords_Old == 0] | |
All_Coords[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2], :] = All_Coords_Old | |
### | |
CurrentMask = (output[0, :, :] > 0).astype(np.float32) | |
All_inds_old = All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] | |
All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i | |
All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] = All_inds_old | |
# | |
All_Coords[:, :, 1:3] = 255. * All_Coords[:, :, 1:3] | |
All_Coords[All_Coords > 255] = 255. | |
All_Coords = All_Coords.astype(np.uint8) | |
All_inds = All_inds.astype(np.uint8) | |
# | |
IUV_SaveName = os.path.basename(im_name).split('.')[0] + '_IUV.png' | |
INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png' | |
cv2.imwrite(os.path.join(output_dir, '{}'.format(IUV_SaveName)), All_Coords) | |
cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds) | |
print('IUV written to: ', os.path.join(output_dir, '{}'.format(IUV_SaveName))) | |
### | |
### DensePose Visualization Done!! | |
# | |
output_name = os.path.basename(im_name) + '.' + ext | |
fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi) | |
plt.close('all') | |
# SMPL Visualization | |
if body_uv is not None and len(body_uv) > 2: | |
smpl_fields = body_uv[2] | |
# | |
All_Coords = np.zeros(im.shape) | |
# All_inds = np.zeros([im.shape[0], im.shape[1]]) | |
K = 26 | |
## | |
inds = np.argsort(boxes[:, 4]) | |
## | |
for i, ind in enumerate(inds): | |
entry = boxes[ind, :] | |
if entry[4] > 0.75: | |
entry = entry[0:4].astype(int) | |
center_roi = [(entry[2]+entry[0]) / 2., (entry[3]+entry[1]) / 2.] | |
#### | |
output, center_out = smpl_fields[ind] | |
#### | |
x1_img = max(int(center_roi[0] - center_out[0]), 0) | |
y1_img = max(int(center_roi[1] - center_out[1]), 0) | |
x2_img = min(int(center_roi[0] - center_out[0]) + output.shape[2], im.shape[1]) | |
y2_img = min(int(center_roi[1] - center_out[1]) + output.shape[1], im.shape[0]) | |
All_Coords_Old = All_Coords[y1_img:y2_img, x1_img:x2_img, :] | |
x1_out = max(int(center_out[0] - center_roi[0]), 0) | |
y1_out = max(int(center_out[1] - center_roi[1]), 0) | |
x2_out = x1_out + (x2_img - x1_img) | |
y2_out = y1_out + (y2_img - y1_img) | |
output = output[:, y1_out:y2_out, x1_out:x2_out] | |
# All_Coords_Old = All_Coords[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2], | |
# :] | |
All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2, 0])[All_Coords_Old == 0] | |
All_Coords[y1_img:y2_img, x1_img:x2_img, :] = All_Coords_Old | |
### | |
# CurrentMask = (output[0, :, :] > 0).astype(np.float32) | |
# All_inds_old = All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] | |
# All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i | |
# All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] = All_inds_old | |
# | |
All_Coords = 255. * All_Coords | |
All_Coords[All_Coords > 255] = 255. | |
All_Coords = All_Coords.astype(np.uint8) | |
image_stacked = im[:, :, ::-1] | |
image_stacked[All_Coords > 20] = All_Coords[All_Coords > 20] | |
# All_inds = All_inds.astype(np.uint8) | |
# | |
SMPL_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPL.png' | |
smpl_image_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPLimg.png' | |
# INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png' | |
cv2.imwrite(os.path.join(output_dir, '{}'.format(SMPL_SaveName)), All_Coords) | |
cv2.imwrite(os.path.join(output_dir, '{}'.format(smpl_image_SaveName)), image_stacked) | |
# cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds) | |
print('SMPL written to: ', os.path.join(output_dir, '{}'.format(SMPL_SaveName))) | |
### | |
### SMPL Visualization Done!! | |
# | |
output_name = os.path.basename(im_name) + '.' + ext | |
fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi) | |
plt.close('all') | |
def vis_batch_image_with_joints(batch_image, batch_joints, batch_joints_vis, | |
file_name=None, nrow=8, padding=0, pad_value=1, add_text=True): | |
''' | |
batch_image: [batch_size, channel, height, width] | |
batch_joints: [batch_size, num_joints, 3], | |
batch_joints_vis: [batch_size, num_joints, 1], | |
} | |
''' | |
grid = torchvision.utils.make_grid(batch_image, nrow, padding, True, pad_value=pad_value) | |
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy() | |
ndarr = ndarr.copy() | |
nmaps = batch_image.size(0) | |
xmaps = min(nrow, nmaps) | |
ymaps = int(math.ceil(float(nmaps) / xmaps)) | |
height = int(batch_image.size(2) + padding) | |
width = int(batch_image.size(3) + padding) | |
k = 0 | |
for y in range(ymaps): | |
for x in range(xmaps): | |
if k >= nmaps: | |
break | |
joints = batch_joints[k] | |
joints_vis = batch_joints_vis[k] | |
flip = 1 | |
count = -1 | |
for joint, joint_vis in zip(joints, joints_vis): | |
joint[0] = x * width + padding + joint[0] | |
joint[1] = y * height + padding + joint[1] | |
flip *= -1 | |
count += 1 | |
if joint_vis[0]: | |
try: | |
if flip > 0: | |
cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [255, 0, 0], -1) | |
else: | |
cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [0, 255, 0], -1) | |
if add_text: | |
cv2.putText(ndarr, str(count), (int(joint[0]), int(joint[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, | |
( 0, 255, 0), 1) | |
except Exception as e: | |
print(e) | |
k = k + 1 | |
return ndarr | |
def vis_img_3Djoint(batch_img, joints, pairs=None, joint_group=None): | |
n_sample = joints.shape[0] | |
max_show = 2 | |
if n_sample > max_show: | |
if batch_img is not None: | |
batch_img = batch_img[:max_show] | |
joints = joints[:max_show] | |
n_sample = max_show | |
color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484'] | |
# color = ['g', 'b', 'r'] | |
def m_l_r(idx): | |
if joint_group is None: | |
return 1 | |
for i in range(len(joint_group)): | |
if idx in joint_group[i]: | |
return i | |
for i in range(n_sample): | |
if batch_img is not None: | |
# ax_img = plt.subplot(n_sample, 2, i * 2 + 1) | |
ax_img = plt.subplot(2, n_sample, i + 1) | |
img_np = batch_img[i].cpu().numpy() | |
img_np = np.transpose(img_np, (1, 2, 0)) # H*W*C | |
ax_img.imshow(img_np) | |
ax_img.set_axis_off() | |
ax_pred = plt.subplot(2, n_sample, n_sample + i + 1, projection='3d') | |
else: | |
ax_pred = plt.subplot(1, n_sample, i + 1, projection='3d') | |
plot_kps = joints[i] | |
if plot_kps.shape[1] > 2: | |
if joint_group is None: | |
ax_pred.scatter(plot_kps[:, 2], plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.') | |
ax_pred.scatter(plot_kps[0, 2], plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.') | |
else: | |
for j in range(len(joint_group)): | |
ax_pred.scatter(plot_kps[joint_group[j], 2], plot_kps[joint_group[j], 0], plot_kps[joint_group[j], 1], s=30, c=color[j], marker='s') | |
if pairs is not None: | |
for p in pairs: | |
ax_pred.plot(plot_kps[p, 2], plot_kps[p, 0], plot_kps[p, 1], c=color[m_l_r(p[1])], linewidth=2) | |
# ax_pred.set_axis_off() | |
ax_pred.set_aspect('equal') | |
set_axes_equal(ax_pred) | |
ax_pred.xaxis.set_ticks([]) | |
ax_pred.yaxis.set_ticks([]) | |
ax_pred.zaxis.set_ticks([]) | |
def vis_img_2Djoint(batch_img, joints, pairs=None, joint_group=None): | |
n_sample = joints.shape[0] | |
max_show = 2 | |
if n_sample > max_show: | |
if batch_img is not None: | |
batch_img = batch_img[:max_show] | |
joints = joints[:max_show] | |
n_sample = max_show | |
color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484'] | |
# color = ['g', 'b', 'r'] | |
def m_l_r(idx): | |
if joint_group is None: | |
return 1 | |
for i in range(len(joint_group)): | |
if idx in joint_group[i]: | |
return i | |
for i in range(n_sample): | |
if batch_img is not None: | |
# ax_img = plt.subplot(n_sample, 2, i * 2 + 1) | |
ax_img = plt.subplot(2, n_sample, i + 1) | |
img_np = batch_img[i].cpu().numpy() | |
img_np = np.transpose(img_np, (1, 2, 0)) # H*W*C | |
ax_img.imshow(img_np) | |
ax_img.set_axis_off() | |
ax_pred = plt.subplot(2, n_sample, n_sample + i + 1) | |
else: | |
ax_pred = plt.subplot(1, n_sample, i + 1) | |
plot_kps = joints[i] | |
if plot_kps.shape[1] > 1: | |
if joint_group is None: | |
ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=300, c='#00B0F0', marker='.') | |
# ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.') | |
# ax_pred.scatter(plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.') | |
else: | |
for j in range(len(joint_group)): | |
ax_pred.scatter(plot_kps[joint_group[j], 0], plot_kps[joint_group[j], 1], s=100, c=color[j], marker='o') | |
if pairs is not None: | |
for p in pairs: | |
ax_pred.plot(plot_kps[p, 0], plot_kps[p, 1], c=color[m_l_r(p[1])], linestyle=':', linewidth=3) | |
ax_pred.set_axis_off() | |
ax_pred.set_aspect('equal') | |
ax_pred.axis('equal') | |
# set_axes_equal(ax_pred) | |
ax_pred.xaxis.set_ticks([]) | |
ax_pred.yaxis.set_ticks([]) | |
# ax_pred.zaxis.set_ticks([]) | |
def draw_skeleton(image, kp_2d, dataset='common', unnormalize=True, thickness=2): | |
if unnormalize: | |
kp_2d[:,:2] = normalize_2d_kp(kp_2d[:,:2], 224, inv=True) | |
kp_2d[:,2] = kp_2d[:,2] > 0.3 | |
kp_2d = np.array(kp_2d, dtype=int) | |
rcolor = get_colors()['red'].tolist() | |
pcolor = get_colors()['green'].tolist() | |
lcolor = get_colors()['blue'].tolist() | |
common_lr = [0,0,1,1,0,0,0,0,1,0,0,1,1,1,0] | |
for idx,pt in enumerate(kp_2d): | |
if pt[2] > 0: # if visible | |
if idx % 2 == 0: | |
color = rcolor | |
else: | |
color = pcolor | |
cv2.circle(image, (pt[0], pt[1]), 4, color, -1) | |
# cv2.putText(image, f'{idx}', (pt[0]+1, pt[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 255, 0)) | |
if dataset == 'common' and len(kp_2d) != 15: | |
return image | |
skeleton = eval(f'kp_utils.get_{dataset}_skeleton')() | |
for i,(j1,j2) in enumerate(skeleton): | |
if kp_2d[j1, 2] > 0 and kp_2d[j2, 2] > 0: # if visible | |
if dataset == 'common': | |
color = rcolor if common_lr[i] == 0 else lcolor | |
else: | |
color = lcolor if i % 2 == 0 else rcolor | |
pt1, pt2 = (kp_2d[j1, 0], kp_2d[j1, 1]), (kp_2d[j2, 0], kp_2d[j2, 1]) | |
cv2.line(image, pt1=pt1, pt2=pt2, color=color, thickness=thickness) | |
return image | |
# https://stackoverflow.com/questions/13685386/matplotlib-equal-unit-length-with-equal-aspect-ratio-z-axis-is-not-equal-to | |
def set_axes_equal(ax): | |
'''Make axes of 3D plot have equal scale so that spheres appear as spheres, | |
cubes as cubes, etc.. This is one possible solution to Matplotlib's | |
ax.set_aspect('equal') and ax.axis('equal') not working for 3D. | |
Input | |
ax: a matplotlib axis, e.g., as output from plt.gca(). | |
''' | |
x_limits = ax.get_xlim3d() | |
y_limits = ax.get_ylim3d() | |
z_limits = ax.get_zlim3d() | |
x_range = abs(x_limits[1] - x_limits[0]) | |
x_middle = np.mean(x_limits) | |
y_range = abs(y_limits[1] - y_limits[0]) | |
y_middle = np.mean(y_limits) | |
z_range = abs(z_limits[1] - z_limits[0]) | |
z_middle = np.mean(z_limits) | |
# The plot bounding box is a sphere in the sense of the infinity | |
# norm, hence I call half the max range the plot radius. | |
plot_radius = 0.5*max([x_range, y_range, z_range]) | |
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) | |
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) | |
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) |