ECON / lib /pymafx /utils /pose_utils.py
Yuliang's picture
Support TEXTure
487ee6d
"""
Parts of the code are adapted from https://github.com/akanazawa/hmr
"""
from __future__ import absolute_import, division, print_function
import numpy as np
import torch
def compute_similarity_transform(S1, S2):
"""
Computes a similarity transform (sR, t) that takes
a set of 3D points S1 (3 x N) closest to a set of 3D points S2,
where R is an 3x3 rotation matrix, t 3x1 translation, s scale.
i.e. solves the orthogonal Procrutes problem.
"""
transposed = False
if S1.shape[0] != 3 and S1.shape[0] != 2:
S1 = S1.T
S2 = S2.T
transposed = True
assert (S2.shape[1] == S1.shape[1])
# 1. Remove mean.
mu1 = S1.mean(axis=1, keepdims=True)
mu2 = S2.mean(axis=1, keepdims=True)
X1 = S1 - mu1
X2 = S2 - mu2
# 2. Compute variance of X1 used for scale.
var1 = np.sum(X1**2)
# 3. The outer product of X1 and X2.
K = X1.dot(X2.T)
# 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
# singular vectors of K.
U, s, Vh = np.linalg.svd(K)
V = Vh.T
# Construct Z that fixes the orientation of R to get det(R)=1.
Z = np.eye(U.shape[0])
Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
# Construct R.
R = V.dot(Z.dot(U.T))
# 5. Recover scale.
scale = np.trace(R.dot(K)) / var1
# 6. Recover translation.
t = mu2 - scale * (R.dot(mu1))
# 7. Error:
S1_hat = scale * R.dot(S1) + t
if transposed:
S1_hat = S1_hat.T
return S1_hat
def compute_similarity_transform_batch(S1, S2):
"""Batched version of compute_similarity_transform."""
S1_hat = np.zeros_like(S1)
for i in range(S1.shape[0]):
S1_hat[i] = compute_similarity_transform(S1[i], S2[i])
return S1_hat
def reconstruction_error(S1, S2, reduction='mean'):
"""Do Procrustes alignment and compute reconstruction error."""
S1_hat = compute_similarity_transform_batch(S1, S2)
re = np.sqrt(((S1_hat - S2)**2).sum(axis=-1)).mean(axis=-1)
if reduction == 'mean':
re = re.mean()
elif reduction == 'sum':
re = re.sum()
return re, S1_hat
# https://math.stackexchange.com/questions/382760/composition-of-two-axis-angle-rotations
def axis_angle_add(theta, roll_axis, alpha):
"""Composition of two axis-angle rotations (PyTorch version)
Args:
theta: N x 3
roll_axis: N x 3
alph: N x 1
Returns:
equivalent axis-angle of the composition
"""
alpha = alpha / 2.
l2norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l2norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
b_cos = torch.cos(angle).cpu()
b_sin = torch.sin(angle).cpu()
a_cos = torch.cos(alpha)
a_sin = torch.sin(alpha)
dot_mm = torch.sum(normalized * roll_axis, dim=1, keepdim=True)
cross_mm = torch.zeros_like(normalized)
cross_mm[:, 0] = roll_axis[:, 1] * normalized[:, 2] - roll_axis[:, 2] * normalized[:, 1]
cross_mm[:, 1] = roll_axis[:, 2] * normalized[:, 0] - roll_axis[:, 0] * normalized[:, 2]
cross_mm[:, 2] = roll_axis[:, 0] * normalized[:, 1] - roll_axis[:, 1] * normalized[:, 0]
c_cos = a_cos * b_cos - a_sin * b_sin * dot_mm
c_sin_n = a_sin * b_cos * roll_axis + a_cos * b_sin * normalized + a_sin * b_sin * cross_mm
c_angle = 2 * torch.acos(c_cos)
c_sin = torch.sin(c_angle * 0.5)
c_n = (c_angle / c_sin) * c_sin_n
return c_n
def axis_angle_add_np(theta, roll_axis, alpha):
"""Composition of two axis-angle rotations (NumPy version)
Args:
theta: N x 3
roll_axis: N x 3
alph: N x 1
Returns:
equivalent axis-angle of the composition
"""
alpha = alpha / 2.
angle = np.linalg.norm(theta + 1e-8, ord=2, axis=1, keepdims=True)
normalized = np.divide(theta, angle)
angle = angle * 0.5
b_cos = np.cos(angle)
b_sin = np.sin(angle)
a_cos = np.cos(alpha)
a_sin = np.sin(alpha)
dot_mm = np.sum(normalized * roll_axis, axis=1, keepdims=True)
cross_mm = np.zeros_like(normalized)
cross_mm[:, 0] = roll_axis[:, 1] * normalized[:, 2] - roll_axis[:, 2] * normalized[:, 1]
cross_mm[:, 1] = roll_axis[:, 2] * normalized[:, 0] - roll_axis[:, 0] * normalized[:, 2]
cross_mm[:, 2] = roll_axis[:, 0] * normalized[:, 1] - roll_axis[:, 1] * normalized[:, 0]
c_cos = a_cos * b_cos - a_sin * b_sin * dot_mm
c_sin_n = a_sin * b_cos * roll_axis + a_cos * b_sin * normalized + a_sin * b_sin * cross_mm
c_angle = 2 * np.arccos(c_cos)
c_sin = np.sin(c_angle * 0.5)
c_n = (c_angle / c_sin) * c_sin_n
return c_n