ECON / lib /pymafx /utils /segms.py
Yuliang's picture
Support TEXTure
487ee6d
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Functions for interacting with segmentation masks in the COCO format.
The following terms are used in this module
mask: a binary mask encoded as a 2D numpy array
segm: a segmentation mask in one of the two COCO formats (polygon or RLE)
polygon: COCO's polygon format
RLE: COCO's run length encoding format
"""
from __future__ import (
absolute_import,
division,
print_function,
unicode_literals,
)
import numpy as np
import pycocotools.mask as mask_util
def GetDensePoseMask(Polys):
MaskGen = np.zeros([256, 256])
for i in range(1, 15):
if (Polys[i - 1]):
current_mask = mask_util.decode(Polys[i - 1])
MaskGen[current_mask > 0] = i
return MaskGen
def flip_segms(segms, height, width):
"""Left/right flip each mask in a list of masks."""
def _flip_poly(poly, width):
flipped_poly = np.array(poly)
flipped_poly[0::2] = width - np.array(poly[0::2]) - 1
return flipped_poly.tolist()
def _flip_rle(rle, height, width):
if 'counts' in rle and type(rle['counts']) == list:
# Magic RLE format handling painfully discovered by looking at the
# COCO API showAnns function.
rle = mask_util.frPyObjects([rle], height, width)
mask = mask_util.decode(rle)
mask = mask[:, ::-1, :]
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
flipped_segms = []
for segm in segms:
if type(segm) == list:
# Polygon format
flipped_segms.append([_flip_poly(poly, width) for poly in segm])
else:
# RLE format
assert type(segm) == dict
flipped_segms.append(_flip_rle(segm, height, width))
return flipped_segms
def polys_to_mask(polygons, height, width):
"""Convert from the COCO polygon segmentation format to a binary mask
encoded as a 2D array of data type numpy.float32. The polygon segmentation
is understood to be enclosed inside a height x width image. The resulting
mask is therefore of shape (height, width).
"""
rle = mask_util.frPyObjects(polygons, height, width)
mask = np.array(mask_util.decode(rle), dtype=np.float32)
# Flatten in case polygons was a list
mask = np.sum(mask, axis=2)
mask = np.array(mask > 0, dtype=np.float32)
return mask
def mask_to_bbox(mask):
"""Compute the tight bounding box of a binary mask."""
xs = np.where(np.sum(mask, axis=0) > 0)[0]
ys = np.where(np.sum(mask, axis=1) > 0)[0]
if len(xs) == 0 or len(ys) == 0:
return None
x0 = xs[0]
x1 = xs[-1]
y0 = ys[0]
y1 = ys[-1]
return np.array((x0, y0, x1, y1), dtype=np.float32)
def polys_to_mask_wrt_box(polygons, box, M):
"""Convert from the COCO polygon segmentation format to a binary mask
encoded as a 2D array of data type numpy.float32. The polygon segmentation
is understood to be enclosed in the given box and rasterized to an M x M
mask. The resulting mask is therefore of shape (M, M).
"""
w = box[2] - box[0]
h = box[3] - box[1]
w = np.maximum(w, 1)
h = np.maximum(h, 1)
polygons_norm = []
for poly in polygons:
p = np.array(poly, dtype=np.float32)
p[0::2] = (p[0::2] - box[0]) * M / w
p[1::2] = (p[1::2] - box[1]) * M / h
polygons_norm.append(p)
rle = mask_util.frPyObjects(polygons_norm, M, M)
mask = np.array(mask_util.decode(rle), dtype=np.float32)
# Flatten in case polygons was a list
mask = np.sum(mask, axis=2)
mask = np.array(mask > 0, dtype=np.float32)
return mask
def polys_to_boxes(polys):
"""Convert a list of polygons into an array of tight bounding boxes."""
boxes_from_polys = np.zeros((len(polys), 4), dtype=np.float32)
for i in range(len(polys)):
poly = polys[i]
x0 = min(min(p[::2]) for p in poly)
x1 = max(max(p[::2]) for p in poly)
y0 = min(min(p[1::2]) for p in poly)
y1 = max(max(p[1::2]) for p in poly)
boxes_from_polys[i, :] = [x0, y0, x1, y1]
return boxes_from_polys
def rle_mask_voting(top_masks, all_masks, all_dets, iou_thresh, binarize_thresh, method='AVG'):
"""Returns new masks (in correspondence with `top_masks`) by combining
multiple overlapping masks coming from the pool of `all_masks`. Two methods
for combining masks are supported: 'AVG' uses a weighted average of
overlapping mask pixels; 'UNION' takes the union of all mask pixels.
"""
if len(top_masks) == 0:
return
all_not_crowd = [False] * len(all_masks)
top_to_all_overlaps = mask_util.iou(top_masks, all_masks, all_not_crowd)
decoded_all_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in all_masks]
decoded_top_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in top_masks]
all_boxes = all_dets[:, :4].astype(np.int32)
all_scores = all_dets[:, 4]
# Fill box support with weights
mask_shape = decoded_all_masks[0].shape
mask_weights = np.zeros((len(all_masks), mask_shape[0], mask_shape[1]))
for k in range(len(all_masks)):
ref_box = all_boxes[k]
x_0 = max(ref_box[0], 0)
x_1 = min(ref_box[2] + 1, mask_shape[1])
y_0 = max(ref_box[1], 0)
y_1 = min(ref_box[3] + 1, mask_shape[0])
mask_weights[k, y_0:y_1, x_0:x_1] = all_scores[k]
mask_weights = np.maximum(mask_weights, 1e-5)
top_segms_out = []
for k in range(len(top_masks)):
# Corner case of empty mask
if decoded_top_masks[k].sum() == 0:
top_segms_out.append(top_masks[k])
continue
inds_to_vote = np.where(top_to_all_overlaps[k] >= iou_thresh)[0]
# Only matches itself
if len(inds_to_vote) == 1:
top_segms_out.append(top_masks[k])
continue
masks_to_vote = [decoded_all_masks[i] for i in inds_to_vote]
if method == 'AVG':
ws = mask_weights[inds_to_vote]
soft_mask = np.average(masks_to_vote, axis=0, weights=ws)
mask = np.array(soft_mask > binarize_thresh, dtype=np.uint8)
elif method == 'UNION':
# Any pixel that's on joins the mask
soft_mask = np.sum(masks_to_vote, axis=0)
mask = np.array(soft_mask > 1e-5, dtype=np.uint8)
else:
raise NotImplementedError('Method {} is unknown'.format(method))
rle = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0]
top_segms_out.append(rle)
return top_segms_out
def rle_mask_nms(masks, dets, thresh, mode='IOU'):
"""Performs greedy non-maximum suppression based on an overlap measurement
between masks. The type of measurement is determined by `mode` and can be
either 'IOU' (standard intersection over union) or 'IOMA' (intersection over
mininum area).
"""
if len(masks) == 0:
return []
if len(masks) == 1:
return [0]
if mode == 'IOU':
# Computes ious[m1, m2] = area(intersect(m1, m2)) / area(union(m1, m2))
all_not_crowds = [False] * len(masks)
ious = mask_util.iou(masks, masks, all_not_crowds)
elif mode == 'IOMA':
# Computes ious[m1, m2] = area(intersect(m1, m2)) / min(area(m1), area(m2))
all_crowds = [True] * len(masks)
# ious[m1, m2] = area(intersect(m1, m2)) / area(m2)
ious = mask_util.iou(masks, masks, all_crowds)
# ... = max(area(intersect(m1, m2)) / area(m2),
# area(intersect(m2, m1)) / area(m1))
ious = np.maximum(ious, ious.transpose())
elif mode == 'CONTAINMENT':
# Computes ious[m1, m2] = area(intersect(m1, m2)) / area(m2)
# Which measures how much m2 is contained inside m1
all_crowds = [True] * len(masks)
ious = mask_util.iou(masks, masks, all_crowds)
else:
raise NotImplementedError('Mode {} is unknown'.format(mode))
scores = dets[:, 4]
order = np.argsort(-scores)
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
ovr = ious[i, order[1:]]
inds_to_keep = np.where(ovr <= thresh)[0]
order = order[inds_to_keep + 1]
return keep
def rle_masks_to_boxes(masks):
"""Computes the bounding box of each mask in a list of RLE encoded masks."""
if len(masks) == 0:
return []
decoded_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in masks]
def get_bounds(flat_mask):
inds = np.where(flat_mask > 0)[0]
return inds.min(), inds.max()
boxes = np.zeros((len(decoded_masks), 4))
keep = [True] * len(decoded_masks)
for i, mask in enumerate(decoded_masks):
if mask.sum() == 0:
keep[i] = False
continue
flat_mask = mask.sum(axis=0)
x0, x1 = get_bounds(flat_mask)
flat_mask = mask.sum(axis=1)
y0, y1 = get_bounds(flat_mask)
boxes[i, :] = (x0, y0, x1, y1)
return boxes, np.where(keep)[0]