Yuliang's picture
Support TEXTure
487ee6d
# Written by Roy Tseng
#
# Based on:
# --------------------------------------------------------
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import (
absolute_import,
division,
print_function,
unicode_literals,
)
import math
import os
import cv2
# Use a non-interactive backend
import matplotlib
import numpy as np
import pycocotools.mask as mask_util
import torchvision
from .colormap import colormap
from .imutils import normalize_2d_kp
from .keypoints import get_keypoints
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from mpl_toolkits.mplot3d import Axes3D
from skimage.transform import resize
plt.rcParams['pdf.fonttype'] = 42 # For editing in Adobe Illustrator
_GRAY = (218, 227, 218)
_GREEN = (18, 127, 15)
_WHITE = (255, 255, 255)
def get_colors():
colors = {
'pink': np.array([197, 27, 125]), # L lower leg
'light_pink': np.array([233, 163, 201]), # L upper leg
'light_green': np.array([161, 215, 106]), # L lower arm
'green': np.array([77, 146, 33]), # L upper arm
'red': np.array([215, 48, 39]), # head
'light_red': np.array([252, 146, 114]), # head
'light_orange': np.array([252, 141, 89]), # chest
'purple': np.array([118, 42, 131]), # R lower leg
'light_purple': np.array([175, 141, 195]), # R upper
'light_blue': np.array([145, 191, 219]), # R lower arm
'blue': np.array([69, 117, 180]), # R upper arm
'gray': np.array([130, 130, 130]), #
'white': np.array([255, 255, 255]), #
}
return colors
def kp_connections(keypoints):
kp_lines = [
[keypoints.index('left_eye'), keypoints.index('right_eye')],
[keypoints.index('left_eye'), keypoints.index('nose')],
[keypoints.index('right_eye'), keypoints.index('nose')],
[keypoints.index('right_eye'), keypoints.index('right_ear')],
[keypoints.index('left_eye'), keypoints.index('left_ear')],
[keypoints.index('right_shoulder'),
keypoints.index('right_elbow')],
[keypoints.index('right_elbow'),
keypoints.index('right_wrist')],
[keypoints.index('left_shoulder'),
keypoints.index('left_elbow')],
[keypoints.index('left_elbow'),
keypoints.index('left_wrist')],
[keypoints.index('right_hip'), keypoints.index('right_knee')],
[keypoints.index('right_knee'),
keypoints.index('right_ankle')],
[keypoints.index('left_hip'), keypoints.index('left_knee')],
[keypoints.index('left_knee'), keypoints.index('left_ankle')],
[keypoints.index('right_shoulder'),
keypoints.index('left_shoulder')],
[keypoints.index('right_hip'), keypoints.index('left_hip')],
]
return kp_lines
def convert_from_cls_format(cls_boxes, cls_segms, cls_keyps):
"""Convert from the class boxes/segms/keyps format generated by the testing
code.
"""
box_list = [b for b in cls_boxes if len(b) > 0]
if len(box_list) > 0:
boxes = np.concatenate(box_list)
else:
boxes = None
if cls_segms is not None:
segms = [s for slist in cls_segms for s in slist]
else:
segms = None
if cls_keyps is not None:
keyps = [k for klist in cls_keyps for k in klist]
else:
keyps = None
classes = []
for j in range(len(cls_boxes)):
classes += [j] * len(cls_boxes[j])
return boxes, segms, keyps, classes
def vis_bbox_opencv(img, bbox, thick=1):
"""Visualizes a bounding box."""
(x0, y0, w, h) = bbox
x1, y1 = int(x0 + w), int(y0 + h)
x0, y0 = int(x0), int(y0)
cv2.rectangle(img, (x0, y0), (x1, y1), _GREEN, thickness=thick)
return img
def get_class_string(class_index, score, dataset):
class_text = dataset.classes[class_index] if dataset is not None else \
'id{:d}'.format(class_index)
return class_text + ' {:0.2f}'.format(score).lstrip('0')
def vis_one_image(
im,
im_name,
output_dir,
boxes,
segms=None,
keypoints=None,
body_uv=None,
thresh=0.9,
kp_thresh=2,
dpi=200,
box_alpha=0.0,
dataset=None,
show_class=False,
ext='pdf'
):
"""Visual debugging of detections."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if isinstance(boxes, list):
boxes, segms, keypoints, classes = convert_from_cls_format(boxes, segms, keypoints)
if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh:
return
if segms is not None:
masks = mask_util.decode(segms)
color_list = colormap(rgb=True) / 255
dataset_keypoints, _ = get_keypoints()
kp_lines = kp_connections(dataset_keypoints)
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)]
fig = plt.figure(frameon=False)
fig.set_size_inches(im.shape[1] / dpi, im.shape[0] / dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.axis('off')
fig.add_axes(ax)
ax.imshow(im)
# Display in largest to smallest order to reduce occlusion
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
sorted_inds = np.argsort(-areas)
mask_color_id = 0
for i in sorted_inds:
bbox = boxes[i, :4]
score = boxes[i, -1]
if score < thresh:
continue
print(dataset.classes[classes[i]], score)
# show box (off by default, box_alpha=0.0)
ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1],
fill=False,
edgecolor='g',
linewidth=0.5,
alpha=box_alpha)
)
if show_class:
ax.text(
bbox[0],
bbox[1] - 2,
get_class_string(classes[i], score, dataset),
fontsize=3,
family='serif',
bbox=dict(facecolor='g', alpha=0.4, pad=0, edgecolor='none'),
color='white'
)
# show mask
if segms is not None and len(segms) > i:
img = np.ones(im.shape)
color_mask = color_list[mask_color_id % len(color_list), 0:3]
mask_color_id += 1
w_ratio = .4
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio
for c in range(3):
img[:, :, c] = color_mask[c]
e = masks[:, :, i]
_, contour, hier = cv2.findContours(e.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
for c in contour:
polygon = Polygon(
c.reshape((-1, 2)),
fill=True,
facecolor=color_mask,
edgecolor='w',
linewidth=1.2,
alpha=0.5
)
ax.add_patch(polygon)
# show keypoints
if keypoints is not None and len(keypoints) > i:
kps = keypoints[i]
plt.autoscale(False)
for l in range(len(kp_lines)):
i1 = kp_lines[l][0]
i2 = kp_lines[l][1]
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
x = [kps[0, i1], kps[0, i2]]
y = [kps[1, i1], kps[1, i2]]
line = ax.plot(x, y)
plt.setp(line, color=colors[l], linewidth=1.0, alpha=0.7)
if kps[2, i1] > kp_thresh:
ax.plot(kps[0, i1], kps[1, i1], '.', color=colors[l], markersize=3.0, alpha=0.7)
if kps[2, i2] > kp_thresh:
ax.plot(kps[0, i2], kps[1, i2], '.', color=colors[l], markersize=3.0, alpha=0.7)
# add mid shoulder / mid hip for better visualization
mid_shoulder = (
kps[:2, dataset_keypoints.index('right_shoulder')] +
kps[:2, dataset_keypoints.index('left_shoulder')]
) / 2.0
sc_mid_shoulder = np.minimum(
kps[2, dataset_keypoints.index('right_shoulder')],
kps[2, dataset_keypoints.index('left_shoulder')]
)
mid_hip = (
kps[:2, dataset_keypoints.index('right_hip')] +
kps[:2, dataset_keypoints.index('left_hip')]
) / 2.0
sc_mid_hip = np.minimum(
kps[2, dataset_keypoints.index('right_hip')],
kps[2, dataset_keypoints.index('left_hip')]
)
if (
sc_mid_shoulder > kp_thresh and kps[2, dataset_keypoints.index('nose')] > kp_thresh
):
x = [mid_shoulder[0], kps[0, dataset_keypoints.index('nose')]]
y = [mid_shoulder[1], kps[1, dataset_keypoints.index('nose')]]
line = ax.plot(x, y)
plt.setp(line, color=colors[len(kp_lines)], linewidth=1.0, alpha=0.7)
if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh:
x = [mid_shoulder[0], mid_hip[0]]
y = [mid_shoulder[1], mid_hip[1]]
line = ax.plot(x, y)
plt.setp(line, color=colors[len(kp_lines) + 1], linewidth=1.0, alpha=0.7)
# DensePose Visualization Starts!!
## Get full IUV image out
if body_uv is not None and len(body_uv) > 1:
IUV_fields = body_uv[1]
#
All_Coords = np.zeros(im.shape)
All_inds = np.zeros([im.shape[0], im.shape[1]])
K = 26
##
inds = np.argsort(boxes[:, 4])
##
for i, ind in enumerate(inds):
entry = boxes[ind, :]
if entry[4] > 0.65:
entry = entry[0:4].astype(int)
####
output = IUV_fields[ind]
####
All_Coords_Old = All_Coords[entry[1]:entry[1] + output.shape[1],
entry[0]:entry[0] + output.shape[2], :]
All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2,
0])[All_Coords_Old == 0]
All_Coords[entry[1]:entry[1] + output.shape[1],
entry[0]:entry[0] + output.shape[2], :] = All_Coords_Old
###
CurrentMask = (output[0, :, :] > 0).astype(np.float32)
All_inds_old = All_inds[entry[1]:entry[1] + output.shape[1],
entry[0]:entry[0] + output.shape[2]]
All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i
All_inds[entry[1]:entry[1] + output.shape[1],
entry[0]:entry[0] + output.shape[2]] = All_inds_old
#
All_Coords[:, :, 1:3] = 255. * All_Coords[:, :, 1:3]
All_Coords[All_Coords > 255] = 255.
All_Coords = All_Coords.astype(np.uint8)
All_inds = All_inds.astype(np.uint8)
#
IUV_SaveName = os.path.basename(im_name).split('.')[0] + '_IUV.png'
INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png'
cv2.imwrite(os.path.join(output_dir, '{}'.format(IUV_SaveName)), All_Coords)
cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds)
print('IUV written to: ', os.path.join(output_dir, '{}'.format(IUV_SaveName)))
###
### DensePose Visualization Done!!
#
output_name = os.path.basename(im_name) + '.' + ext
fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi)
plt.close('all')
# SMPL Visualization
if body_uv is not None and len(body_uv) > 2:
smpl_fields = body_uv[2]
#
All_Coords = np.zeros(im.shape)
# All_inds = np.zeros([im.shape[0], im.shape[1]])
K = 26
##
inds = np.argsort(boxes[:, 4])
##
for i, ind in enumerate(inds):
entry = boxes[ind, :]
if entry[4] > 0.75:
entry = entry[0:4].astype(int)
center_roi = [(entry[2] + entry[0]) / 2., (entry[3] + entry[1]) / 2.]
####
output, center_out = smpl_fields[ind]
####
x1_img = max(int(center_roi[0] - center_out[0]), 0)
y1_img = max(int(center_roi[1] - center_out[1]), 0)
x2_img = min(int(center_roi[0] - center_out[0]) + output.shape[2], im.shape[1])
y2_img = min(int(center_roi[1] - center_out[1]) + output.shape[1], im.shape[0])
All_Coords_Old = All_Coords[y1_img:y2_img, x1_img:x2_img, :]
x1_out = max(int(center_out[0] - center_roi[0]), 0)
y1_out = max(int(center_out[1] - center_roi[1]), 0)
x2_out = x1_out + (x2_img - x1_img)
y2_out = y1_out + (y2_img - y1_img)
output = output[:, y1_out:y2_out, x1_out:x2_out]
# All_Coords_Old = All_Coords[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2],
# :]
All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2,
0])[All_Coords_Old == 0]
All_Coords[y1_img:y2_img, x1_img:x2_img, :] = All_Coords_Old
###
# CurrentMask = (output[0, :, :] > 0).astype(np.float32)
# All_inds_old = All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]]
# All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i
# All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] = All_inds_old
#
All_Coords = 255. * All_Coords
All_Coords[All_Coords > 255] = 255.
All_Coords = All_Coords.astype(np.uint8)
image_stacked = im[:, :, ::-1]
image_stacked[All_Coords > 20] = All_Coords[All_Coords > 20]
# All_inds = All_inds.astype(np.uint8)
#
SMPL_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPL.png'
smpl_image_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPLimg.png'
# INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png'
cv2.imwrite(os.path.join(output_dir, '{}'.format(SMPL_SaveName)), All_Coords)
cv2.imwrite(os.path.join(output_dir, '{}'.format(smpl_image_SaveName)), image_stacked)
# cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds)
print('SMPL written to: ', os.path.join(output_dir, '{}'.format(SMPL_SaveName)))
###
### SMPL Visualization Done!!
#
output_name = os.path.basename(im_name) + '.' + ext
fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi)
plt.close('all')
def vis_batch_image_with_joints(
batch_image,
batch_joints,
batch_joints_vis,
file_name=None,
nrow=8,
padding=0,
pad_value=1,
add_text=True
):
'''
batch_image: [batch_size, channel, height, width]
batch_joints: [batch_size, num_joints, 3],
batch_joints_vis: [batch_size, num_joints, 1],
}
'''
grid = torchvision.utils.make_grid(batch_image, nrow, padding, True, pad_value=pad_value)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
ndarr = ndarr.copy()
nmaps = batch_image.size(0)
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(float(nmaps) / xmaps))
height = int(batch_image.size(2) + padding)
width = int(batch_image.size(3) + padding)
k = 0
for y in range(ymaps):
for x in range(xmaps):
if k >= nmaps:
break
joints = batch_joints[k]
joints_vis = batch_joints_vis[k]
flip = 1
count = -1
for joint, joint_vis in zip(joints, joints_vis):
joint[0] = x * width + padding + joint[0]
joint[1] = y * height + padding + joint[1]
flip *= -1
count += 1
if joint_vis[0]:
try:
if flip > 0:
cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [255, 0, 0], -1)
else:
cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [0, 255, 0], -1)
if add_text:
cv2.putText(
ndarr, str(count), (int(joint[0]), int(joint[1])),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1
)
except Exception as e:
print(e)
k = k + 1
return ndarr
def vis_img_3Djoint(batch_img, joints, pairs=None, joint_group=None):
n_sample = joints.shape[0]
max_show = 2
if n_sample > max_show:
if batch_img is not None:
batch_img = batch_img[:max_show]
joints = joints[:max_show]
n_sample = max_show
color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484']
# color = ['g', 'b', 'r']
def m_l_r(idx):
if joint_group is None:
return 1
for i in range(len(joint_group)):
if idx in joint_group[i]:
return i
for i in range(n_sample):
if batch_img is not None:
# ax_img = plt.subplot(n_sample, 2, i * 2 + 1)
ax_img = plt.subplot(2, n_sample, i + 1)
img_np = batch_img[i].cpu().numpy()
img_np = np.transpose(img_np, (1, 2, 0)) # H*W*C
ax_img.imshow(img_np)
ax_img.set_axis_off()
ax_pred = plt.subplot(2, n_sample, n_sample + i + 1, projection='3d')
else:
ax_pred = plt.subplot(1, n_sample, i + 1, projection='3d')
plot_kps = joints[i]
if plot_kps.shape[1] > 2:
if joint_group is None:
ax_pred.scatter(plot_kps[:, 2], plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.')
ax_pred.scatter(
plot_kps[0, 2], plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.'
)
else:
for j in range(len(joint_group)):
ax_pred.scatter(
plot_kps[joint_group[j], 2],
plot_kps[joint_group[j], 0],
plot_kps[joint_group[j], 1],
s=30,
c=color[j],
marker='s'
)
if pairs is not None:
for p in pairs:
ax_pred.plot(
plot_kps[p, 2],
plot_kps[p, 0],
plot_kps[p, 1],
c=color[m_l_r(p[1])],
linewidth=2
)
# ax_pred.set_axis_off()
ax_pred.set_aspect('equal')
set_axes_equal(ax_pred)
ax_pred.xaxis.set_ticks([])
ax_pred.yaxis.set_ticks([])
ax_pred.zaxis.set_ticks([])
def vis_img_2Djoint(batch_img, joints, pairs=None, joint_group=None):
n_sample = joints.shape[0]
max_show = 2
if n_sample > max_show:
if batch_img is not None:
batch_img = batch_img[:max_show]
joints = joints[:max_show]
n_sample = max_show
color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484']
# color = ['g', 'b', 'r']
def m_l_r(idx):
if joint_group is None:
return 1
for i in range(len(joint_group)):
if idx in joint_group[i]:
return i
for i in range(n_sample):
if batch_img is not None:
# ax_img = plt.subplot(n_sample, 2, i * 2 + 1)
ax_img = plt.subplot(2, n_sample, i + 1)
img_np = batch_img[i].cpu().numpy()
img_np = np.transpose(img_np, (1, 2, 0)) # H*W*C
ax_img.imshow(img_np)
ax_img.set_axis_off()
ax_pred = plt.subplot(2, n_sample, n_sample + i + 1)
else:
ax_pred = plt.subplot(1, n_sample, i + 1)
plot_kps = joints[i]
if plot_kps.shape[1] > 1:
if joint_group is None:
ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=300, c='#00B0F0', marker='.')
# ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.')
# ax_pred.scatter(plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.')
else:
for j in range(len(joint_group)):
ax_pred.scatter(
plot_kps[joint_group[j], 0],
plot_kps[joint_group[j], 1],
s=100,
c=color[j],
marker='o'
)
if pairs is not None:
for p in pairs:
ax_pred.plot(
plot_kps[p, 0],
plot_kps[p, 1],
c=color[m_l_r(p[1])],
linestyle=':',
linewidth=3
)
ax_pred.set_axis_off()
ax_pred.set_aspect('equal')
ax_pred.axis('equal')
# set_axes_equal(ax_pred)
ax_pred.xaxis.set_ticks([])
ax_pred.yaxis.set_ticks([])
# ax_pred.zaxis.set_ticks([])
def draw_skeleton(image, kp_2d, dataset='common', unnormalize=True, thickness=2):
if unnormalize:
kp_2d[:, :2] = normalize_2d_kp(kp_2d[:, :2], 224, inv=True)
kp_2d[:, 2] = kp_2d[:, 2] > 0.3
kp_2d = np.array(kp_2d, dtype=int)
rcolor = get_colors()['red'].tolist()
pcolor = get_colors()['green'].tolist()
lcolor = get_colors()['blue'].tolist()
common_lr = [0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0]
for idx, pt in enumerate(kp_2d):
if pt[2] > 0: # if visible
if idx % 2 == 0:
color = rcolor
else:
color = pcolor
cv2.circle(image, (pt[0], pt[1]), 4, color, -1)
# cv2.putText(image, f'{idx}', (pt[0]+1, pt[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 255, 0))
if dataset == 'common' and len(kp_2d) != 15:
return image
skeleton = eval(f'kp_utils.get_{dataset}_skeleton')()
for i, (j1, j2) in enumerate(skeleton):
if kp_2d[j1, 2] > 0 and kp_2d[j2, 2] > 0: # if visible
if dataset == 'common':
color = rcolor if common_lr[i] == 0 else lcolor
else:
color = lcolor if i % 2 == 0 else rcolor
pt1, pt2 = (kp_2d[j1, 0], kp_2d[j1, 1]), (kp_2d[j2, 0], kp_2d[j2, 1])
cv2.line(image, pt1=pt1, pt2=pt2, color=color, thickness=thickness)
return image
# https://stackoverflow.com/questions/13685386/matplotlib-equal-unit-length-with-equal-aspect-ratio-z-axis-is-not-equal-to
def set_axes_equal(ax):
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
cubes as cubes, etc.. This is one possible solution to Matplotlib's
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
Input
ax: a matplotlib axis, e.g., as output from plt.gca().
'''
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
# The plot bounding box is a sphere in the sense of the infinity
# norm, hence I call half the max range the plot radius.
plot_radius = 0.5 * max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])