Yuliang commited on
Commit
66ab6d4
·
1 Parent(s): da48dbe

semantic-aware hand+face replacement

Browse files
LICENSE CHANGED
@@ -39,12 +39,12 @@ You acknowledge that the Data & Software is a valuable scientific resource and a
39
 
40
  Citation:
41
 
42
- @inproceedings{xiu2022econ,
43
- title={{ECON}: {E}xplicit {C}lothed humans {O}btained from {N}ormals},
44
- author={Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
45
- booktitle=arXiv,
46
- month = Dec,
47
- year={2022}
48
  }
49
 
50
  Commercial licensing opportunities
 
39
 
40
  Citation:
41
 
42
+ @misc{xiu2022econ,
43
+ title={ECON: Explicit Clothed humans Obtained from Normals},
44
+ author={Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
45
+ year={2022}
46
+ publisher={arXiv},
47
+ primaryClass={cs.CV}
48
  }
49
 
50
  Commercial licensing opportunities
README.md CHANGED
@@ -25,8 +25,10 @@
25
  <a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a>
26
  <br></br>
27
  <a href=''>
28
- <img src='https://img.shields.io/badge/Paper-PDF-green?style=for-the-badge&logo=arXiv&logoColor=green' alt='Paper PDF'>
29
  </a>
 
 
30
  <a href="https://discord.gg/Vqa7KBGRyk"><img src="https://img.shields.io/discord/940240966844035082?color=7289DA&labelColor=4a64bd&logo=discord&logoColor=white&style=for-the-badge"></a>
31
  <a href="https://youtu.be/j5hw4tsWpoY"><img alt="youtube views" title="Subscribe to my YouTube channel" src="https://img.shields.io/youtube/views/j5hw4tsWpoY?logo=youtube&labelColor=ce4630&style=for-the-badge"/></a>
32
  </p>
@@ -39,9 +41,11 @@ ECON is designed for **"Human digitization from a color image"**, which combines
39
  <br/>
40
 
41
  ## News :triangular_flag_on_post:
42
- - [2022/03/05] <a href="">arXiv</a> and <a href="#demo">demo</a> are available.
 
43
 
44
  ## TODO
 
45
  - [ ] Blender add-on for FBX export
46
  - [ ] Full RGB texture generation
47
 
@@ -72,29 +76,33 @@ ECON is designed for **"Human digitization from a color image"**, which combines
72
 
73
  - See [docs/installation.md](docs/installation.md) to install all the required packages and setup the models
74
 
75
-
76
  ## Demo
77
 
78
  ```bash
79
- # For image-based reconstruction
80
  python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results
81
 
82
- # For video rendering
 
 
 
83
  python -m apps.multi_render -n {filename}
84
  ```
85
 
86
  ## Tricks
87
- ### Some adjustable parameters in *config/econ.yaml*
88
- - `use_ifnet`
 
 
89
  - True: use IF-Nets+ for mesh completion ( $\text{ECON}_\text{IF}$ - Better quality)
90
  - False: use SMPL-X for mesh completion ( $\text{ECON}_\text{EX}$ - Faster speed)
91
- - `use_smpl`
92
  - [ ]: don't use either hands or face parts from SMPL-X
93
  - ["hand"]: only use the **visible** hands from SMPL-X
94
  - ["hand", "face"]: use both **visible** hands and face from SMPL-X
95
- - `thickness` (default 2cm)
96
  - could be increased accordingly in case **xx_full.obj** looks flat
97
- - `hps_type`
98
  - "pixie": more accurate for face and hands
99
  - "pymafx": more robust for challenging poses
100
 
@@ -102,16 +110,15 @@ python -m apps.multi_render -n {filename}
102
 
103
  ## More Qualitative Results
104
 
105
- |![OOD Poses](assets/OOD-poses.jpg)|
106
- | :----------------------: |
107
- |_Challenging Poses_|
108
- |![OOD Clothes](assets/OOD-outfits.jpg)|
109
- |_Loose Clothes_|
110
- |![SHHQ](assets/SHHQ.gif)|
111
- |_ECON Results on [SHHQ Dataset](https://github.com/stylegan-human/StyleGAN-Human)_|
112
- |![crowd](assets/crowd.gif)|
113
- |_ECON Results on Multi-Person Image_|
114
-
115
 
116
  <br/>
117
  <br/>
@@ -119,14 +126,15 @@ python -m apps.multi_render -n {filename}
119
  ## Citation
120
 
121
  ```bibtex
122
- @inproceedings{xiu2022econ,
123
- title = {{ECON}: {E}xplicit {C}lothed humans {O}btained from {N}ormals},
124
- author = {Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
125
- booktitle = arXiv,
126
- month = {Dec},
127
- year = {2022},
128
  }
129
  ```
 
130
  <br/>
131
 
132
  ## Acknowledgments
@@ -146,7 +154,7 @@ Some images used in the qualitative examples come from [pinterest.com](https://w
146
 
147
  This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.860768 ([CLIPE Project](https://www.clipe-itn.eu)).
148
 
149
- --------------
150
 
151
  <br>
152
 
@@ -156,10 +164,11 @@ This code and model are available for non-commercial scientific research purpose
156
 
157
  ## Disclosure
158
 
159
- MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH.
160
 
161
  ## Contact
162
 
163
  For technical questions, please contact yuliang.xiu@tue.mpg.de
164
 
165
- For commercial licensing, please contact ps-licensing@tue.mpg.de and black@tue.mpg.de
 
 
25
  <a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a>
26
  <br></br>
27
  <a href=''>
28
+ <img src='https://img.shields.io/badge/Paper-PDF (coming soon)-green?style=for-the-badge&logo=arXiv&logoColor=green' alt='Paper PDF'>
29
  </a>
30
+ <a href='https://xiuyuliang.cn/econ/'>
31
+ <img src='https://img.shields.io/badge/ECON-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=orange' alt='Project Page'></a>
32
  <a href="https://discord.gg/Vqa7KBGRyk"><img src="https://img.shields.io/discord/940240966844035082?color=7289DA&labelColor=4a64bd&logo=discord&logoColor=white&style=for-the-badge"></a>
33
  <a href="https://youtu.be/j5hw4tsWpoY"><img alt="youtube views" title="Subscribe to my YouTube channel" src="https://img.shields.io/youtube/views/j5hw4tsWpoY?logo=youtube&labelColor=ce4630&style=for-the-badge"/></a>
34
  </p>
 
41
  <br/>
42
 
43
  ## News :triangular_flag_on_post:
44
+
45
+ - [2022/12/09] <a href="#demo">Demo</a> is available.
46
 
47
  ## TODO
48
+
49
  - [ ] Blender add-on for FBX export
50
  - [ ] Full RGB texture generation
51
 
 
76
 
77
  - See [docs/installation.md](docs/installation.md) to install all the required packages and setup the models
78
 
 
79
  ## Demo
80
 
81
  ```bash
82
+ # For single-person image-based reconstruction
83
  python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results
84
 
85
+ # For multi-person image-based reconstruction (see config/econ.yaml)
86
+ python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results -multi
87
+
88
+ # To generate the demo video of reconstruction results
89
  python -m apps.multi_render -n {filename}
90
  ```
91
 
92
  ## Tricks
93
+
94
+ ### Some adjustable parameters in _config/econ.yaml_
95
+
96
+ - `use_ifnet: True`
97
  - True: use IF-Nets+ for mesh completion ( $\text{ECON}_\text{IF}$ - Better quality)
98
  - False: use SMPL-X for mesh completion ( $\text{ECON}_\text{EX}$ - Faster speed)
99
+ - `use_smpl: ["hand", "face"]`
100
  - [ ]: don't use either hands or face parts from SMPL-X
101
  - ["hand"]: only use the **visible** hands from SMPL-X
102
  - ["hand", "face"]: use both **visible** hands and face from SMPL-X
103
+ - `thickness: 2cm`
104
  - could be increased accordingly in case **xx_full.obj** looks flat
105
+ - `hps_type: pixie`
106
  - "pixie": more accurate for face and hands
107
  - "pymafx": more robust for challenging poses
108
 
 
110
 
111
  ## More Qualitative Results
112
 
113
+ | ![OOD Poses](assets/OOD-poses.jpg) |
114
+ | :--------------------------------------------------------------------------------: |
115
+ | _Challenging Poses_ |
116
+ | ![OOD Clothes](assets/OOD-outfits.jpg) |
117
+ | _Loose Clothes_ |
118
+ | ![SHHQ](assets/SHHQ.gif) |
119
+ | _ECON Results on [SHHQ Dataset](https://github.com/stylegan-human/StyleGAN-Human)_ |
120
+ | ![crowd](assets/crowd.gif) |
121
+ | _ECON Results on Multi-Person Image_ |
 
122
 
123
  <br/>
124
  <br/>
 
126
  ## Citation
127
 
128
  ```bibtex
129
+ @misc{xiu2022econ,
130
+ title={ECON: Explicit Clothed humans Obtained from Normals},
131
+ author={Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
132
+ year={2022}
133
+ publisher={arXiv},
134
+ primaryClass={cs.CV}
135
  }
136
  ```
137
+
138
  <br/>
139
 
140
  ## Acknowledgments
 
154
 
155
  This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.860768 ([CLIPE Project](https://www.clipe-itn.eu)).
156
 
157
+ ---
158
 
159
  <br>
160
 
 
164
 
165
  ## Disclosure
166
 
167
+ MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH.
168
 
169
  ## Contact
170
 
171
  For technical questions, please contact yuliang.xiu@tue.mpg.de
172
 
173
+ For commercial licensing, please contact ps-licensing@tue.mpg.de
174
+
apps/infer.py CHANGED
@@ -31,6 +31,7 @@ from termcolor import colored
31
  from tqdm.auto import tqdm
32
  from apps.Normal import Normal
33
  from apps.IFGeo import IFGeo
 
34
  from lib.common.config import cfg
35
  from lib.common.train_util import init_loss, load_normal_networks, load_networks
36
  from lib.common.BNI import BNI
@@ -91,6 +92,11 @@ if __name__ == "__main__":
91
  "vol_res": cfg.vol_res,
92
  "single": args.multi,
93
  }
 
 
 
 
 
94
 
95
  dataset = TestDataset(dataset_param, device)
96
 
@@ -378,6 +384,7 @@ if __name__ == "__main__":
378
  side_mesh = smpl_obj_lst[idx].copy()
379
  face_mesh = smpl_obj_lst[idx].copy()
380
  hand_mesh = smpl_obj_lst[idx].copy()
 
381
 
382
  # save normals, depths and masks
383
  BNI_dict = save_normal_tensor(
@@ -404,7 +411,6 @@ if __name__ == "__main__":
404
  # replace SMPL by completed mesh as side_mesh
405
 
406
  if cfg.bni.use_ifnet:
407
- print(colored("Use IF-Nets+ for completion\n", "green"))
408
 
409
  side_mesh_path = f"{args.out_dir}/{cfg.name}/obj/{data['name']}_{idx}_IF.obj"
410
 
@@ -436,13 +442,21 @@ if __name__ == "__main__":
436
  side_mesh = remesh(side_mesh, side_mesh_path)
437
 
438
  else:
439
- print(colored("Use SMPL-X body for completion\n", "green"))
440
  side_mesh = apply_vertex_mask(
441
  side_mesh,
442
  (SMPLX_object.front_flame_vertex_mask + SMPLX_object.mano_vertex_mask +
443
  SMPLX_object.eyeball_vertex_mask).eq(0).float(),
444
  )
445
 
 
 
 
 
 
 
 
 
 
446
  side_verts = torch.tensor(side_mesh.vertices).float().to(device)
447
  side_faces = torch.tensor(side_mesh.faces).long().to(device)
448
 
@@ -464,9 +478,8 @@ if __name__ == "__main__":
464
 
465
  # remove face neighbor triangles
466
  BNI_object.F_B_trimesh = part_removal(
467
- BNI_object.F_B_trimesh, None, face_mesh, cfg.bni.face_thres, device, camera_ray=True)
468
- side_mesh = part_removal(
469
- side_mesh, torch.zeros_like(side_verts[:, 0:1]), face_mesh, cfg.bni.face_thres, device, camera_ray=True)
470
  face_mesh.export(f"{args.out_dir}/{cfg.name}/obj/{data['name']}_{idx}_face.obj")
471
  full_lst += [face_mesh]
472
 
@@ -480,18 +493,18 @@ if __name__ == "__main__":
480
 
481
  # only hands
482
  hand_mesh = apply_vertex_mask(hand_mesh, hand_mask)
483
- # remove face neighbor triangles
 
484
  BNI_object.F_B_trimesh = part_removal(
485
- BNI_object.F_B_trimesh, None, hand_mesh, cfg.bni.hand_thres, device, camera_ray=True)
486
- side_mesh = part_removal(
487
- side_mesh, torch.zeros_like(side_verts[:, 0:1]), hand_mesh, cfg.bni.hand_thres, device, camera_ray=True)
488
  hand_mesh.export(f"{args.out_dir}/{cfg.name}/obj/{data['name']}_{idx}_hand.obj")
489
  full_lst += [hand_mesh]
490
 
491
  full_lst += [BNI_object.F_B_trimesh]
492
 
493
  # initial side_mesh could be SMPLX or IF-net
494
- side_mesh = part_removal(side_mesh, torch.zeros_like(side_verts[:, 0:1]), sum(full_lst), 2e-2, device, clean=False)
495
 
496
  full_lst += [side_mesh]
497
 
 
31
  from tqdm.auto import tqdm
32
  from apps.Normal import Normal
33
  from apps.IFGeo import IFGeo
34
+ from pytorch3d.ops import SubdivideMeshes
35
  from lib.common.config import cfg
36
  from lib.common.train_util import init_loss, load_normal_networks, load_networks
37
  from lib.common.BNI import BNI
 
92
  "vol_res": cfg.vol_res,
93
  "single": args.multi,
94
  }
95
+
96
+ if cfg.bni.use_ifnet:
97
+ print(colored("Use IF-Nets (Implicit)+ for completion", "green"))
98
+ else:
99
+ print(colored("Use SMPL-X (Explicit) for completion", "green"))
100
 
101
  dataset = TestDataset(dataset_param, device)
102
 
 
384
  side_mesh = smpl_obj_lst[idx].copy()
385
  face_mesh = smpl_obj_lst[idx].copy()
386
  hand_mesh = smpl_obj_lst[idx].copy()
387
+ smplx_mesh = smpl_obj_lst[idx].copy()
388
 
389
  # save normals, depths and masks
390
  BNI_dict = save_normal_tensor(
 
411
  # replace SMPL by completed mesh as side_mesh
412
 
413
  if cfg.bni.use_ifnet:
 
414
 
415
  side_mesh_path = f"{args.out_dir}/{cfg.name}/obj/{data['name']}_{idx}_IF.obj"
416
 
 
442
  side_mesh = remesh(side_mesh, side_mesh_path)
443
 
444
  else:
 
445
  side_mesh = apply_vertex_mask(
446
  side_mesh,
447
  (SMPLX_object.front_flame_vertex_mask + SMPLX_object.mano_vertex_mask +
448
  SMPLX_object.eyeball_vertex_mask).eq(0).float(),
449
  )
450
 
451
+ # upsample the side mesh
452
+ side_sub_mesh = Meshes(
453
+ verts=[torch.tensor(side_mesh.vertices).float()],
454
+ faces=[torch.tensor(side_mesh.faces).long()],
455
+ )
456
+ sm = SubdivideMeshes(side_sub_mesh)
457
+ new_mesh = sm(side_sub_mesh)
458
+ side_mesh = trimesh.Trimesh(new_mesh.verts_padded().squeeze(), new_mesh.faces_padded().squeeze())
459
+
460
  side_verts = torch.tensor(side_mesh.vertices).float().to(device)
461
  side_faces = torch.tensor(side_mesh.faces).long().to(device)
462
 
 
478
 
479
  # remove face neighbor triangles
480
  BNI_object.F_B_trimesh = part_removal(
481
+ BNI_object.F_B_trimesh, face_mesh, cfg.bni.face_thres, device, smplx_mesh, region="face")
482
+ side_mesh = part_removal(side_mesh, face_mesh, cfg.bni.face_thres, device, smplx_mesh, region="face")
 
483
  face_mesh.export(f"{args.out_dir}/{cfg.name}/obj/{data['name']}_{idx}_face.obj")
484
  full_lst += [face_mesh]
485
 
 
493
 
494
  # only hands
495
  hand_mesh = apply_vertex_mask(hand_mesh, hand_mask)
496
+
497
+ # remove hand neighbor triangles
498
  BNI_object.F_B_trimesh = part_removal(
499
+ BNI_object.F_B_trimesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand")
500
+ side_mesh = part_removal(side_mesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand")
 
501
  hand_mesh.export(f"{args.out_dir}/{cfg.name}/obj/{data['name']}_{idx}_hand.obj")
502
  full_lst += [hand_mesh]
503
 
504
  full_lst += [BNI_object.F_B_trimesh]
505
 
506
  # initial side_mesh could be SMPLX or IF-net
507
+ side_mesh = part_removal(side_mesh, sum(full_lst), 2e-2, device, smplx_mesh, region="", clean=False)
508
 
509
  full_lst += [side_mesh]
510
 
configs/econ.yaml CHANGED
@@ -14,22 +14,24 @@ batch_size: 1
14
  dataset:
15
  prior_type: "SMPL"
16
 
17
- # user defined
18
- vol_res: 256 # IF-Net volume resolution
19
- mcube_res: 256
20
- clean_mesh: True # if True, will remove floating pieces
21
  cloth_overlap_thres: 0.50
22
- body_overlap_thres: 0.98
 
 
 
23
 
24
  bni:
25
- k: 2
26
  lambda1: 1e-4
27
  boundary_consist: 1e-6
28
  poisson_depth: 10
29
  use_smpl: ["hand", "face"]
30
  use_ifnet: True
31
  use_poisson: True
32
- hand_thres: 4e-2
33
  face_thres: 6e-2
34
  thickness: 0.02
35
  hps_type: "pixie"
 
14
  dataset:
15
  prior_type: "SMPL"
16
 
17
+ vol_res: 256
18
+ mcube_res: 128
19
+ clean_mesh: True
 
20
  cloth_overlap_thres: 0.50
21
+ body_overlap_thres: 0.00
22
+
23
+ # For crowded / occluded scene
24
+ # body_overlap_thres: 0.98
25
 
26
  bni:
27
+ k: 4
28
  lambda1: 1e-4
29
  boundary_consist: 1e-6
30
  poisson_depth: 10
31
  use_smpl: ["hand", "face"]
32
  use_ifnet: True
33
  use_poisson: True
34
+ hand_thres: 8e-2
35
  face_thres: 6e-2
36
  thickness: 0.02
37
  hps_type: "pixie"
lib/common/BNI.py CHANGED
@@ -25,9 +25,6 @@ class BNI:
25
  # k --> smaller, keep continuity
26
  # lambda --> larger, more depth-awareness
27
 
28
- # self.k = self.cfg.k
29
- # self.lambda1 = self.cfg.lambda1
30
- # self.boundary_consist = self.cfg.boundary_consist
31
  self.k = self.cfg['k']
32
  self.lambda1 = self.cfg['lambda1']
33
  self.boundary_consist = self.cfg['boundary_consist']
 
25
  # k --> smaller, keep continuity
26
  # lambda --> larger, more depth-awareness
27
 
 
 
 
28
  self.k = self.cfg['k']
29
  self.lambda1 = self.cfg['lambda1']
30
  self.boundary_consist = self.cfg['boundary_consist']
lib/common/BNI_utils.py CHANGED
@@ -657,22 +657,6 @@ def save_normal_tensor(in_tensor, idx, png_path, thickness=0.0):
657
 
658
  BNI_dict = {}
659
 
660
- # add random masks
661
- # normal_F_arr[200:300,200:300,:] *= 0
662
- # normal_B_arr[200:300,200:300,:] *= 0
663
- # mask_normal_arr[200:300,200:300] *= 0
664
-
665
- # normal_F_arr[:,:200,:] *= 0
666
- # normal_B_arr[:,:200,:] *= 0
667
- # mask_normal_arr[:,:200] *= 0
668
-
669
- # normal_F_arr[:200,:,:] *= 0
670
- # normal_B_arr[:200,:,:] *= 0
671
- # mask_normal_arr[:200,:] *= 0
672
-
673
- # Image.fromarray(((normal_F_arr+1.0)*0.5*255).astype(np.uint8)).save(png_path+"_F.png")
674
- # Image.fromarray(((normal_B_arr+1.0)*0.5*255).astype(np.uint8)).save(png_path+"_B.png")
675
-
676
  # clothed human
677
  BNI_dict["normal_F"] = normal_F_arr
678
  BNI_dict["normal_B"] = normal_B_arr
 
657
 
658
  BNI_dict = {}
659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
660
  # clothed human
661
  BNI_dict["normal_F"] = normal_F_arr
662
  BNI_dict["normal_B"] = normal_B_arr
lib/dataset/TestDataset.py CHANGED
@@ -80,7 +80,7 @@ class TestDataset:
80
 
81
  self.smpl_model = PIXIE_SMPLX(pixie_cfg.model).to(self.device)
82
 
83
- print(colored(f"Using -- {self.hps_type} -- as HPS Estimator\n", "green"))
84
 
85
  self.render = Render(size=512, device=self.device)
86
 
 
80
 
81
  self.smpl_model = PIXIE_SMPLX(pixie_cfg.model).to(self.device)
82
 
83
+ print(colored(f"Use {self.hps_type.upper()} to estimate human pose and shape", "green"))
84
 
85
  self.render = Render(size=512, device=self.device)
86
 
lib/dataset/mesh_util.py CHANGED
@@ -24,17 +24,19 @@ import os
24
  from termcolor import colored
25
  import os.path as osp
26
  import _pickle as cPickle
 
27
 
28
  from pytorch3d.structures import Meshes
29
  import torch.nn.functional as F
30
  import lib.smplx as smplx
31
- from lib.common.imutils import uncrop
32
- from lib.common.render_utils import Pytorch3dRasterizer
33
  from pytorch3d.renderer.mesh import rasterize_meshes
34
  from PIL import Image, ImageFont, ImageDraw
35
  from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency
36
  import tinyobjloader
37
 
 
 
 
38
 
39
  class SMPLX:
40
 
@@ -55,11 +57,13 @@ class SMPLX:
55
  self.smplx_flame_vid_path = osp.join(self.current_dir, "smpl_data/FLAME_SMPLX_vertex_ids.npy")
56
  self.smplx_mano_vid_path = osp.join(self.current_dir, "smpl_data/MANO_SMPLX_vertex_ids.pkl")
57
  self.front_flame_path = osp.join(self.current_dir, "smpl_data/FLAME_face_mask_ids.npy")
 
58
 
59
  self.smplx_faces = np.load(self.smplx_faces_path)
60
  self.smplx_verts = np.load(self.smplx_verts_path)
61
  self.smpl_verts = np.load(self.smpl_verts_path)
62
  self.smpl_faces = np.load(self.smpl_faces_path)
 
63
 
64
  self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid_path)
65
  self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid_path)
@@ -264,28 +268,32 @@ def apply_vertex_face_mask(mesh, vertex_mask, face_mask):
264
  return mesh
265
 
266
 
267
- def part_removal(full_mesh, vis_mask, part_mesh, thres, device, clean=True, camera_ray=False):
268
 
269
- # thres: face 3e-2, hand 4e-2
 
270
 
271
  from lib.dataset.PointFeat import PointFeat
 
272
  part_extractor = PointFeat(
273
  torch.tensor(part_mesh.vertices).unsqueeze(0).to(device),
274
  torch.tensor(part_mesh.faces).unsqueeze(0).to(device))
275
 
276
- (part_dist, part_cos) = part_extractor.query(torch.tensor(full_mesh.vertices).unsqueeze(0).to(device))
277
 
278
- if camera_ray:
279
- remove_mask = torch.logical_and(part_dist < thres, part_cos > 0.5)
280
- else:
281
- remove_mask = part_dist < thres
282
 
283
- if vis_mask is not None:
284
- BNI_verts_mask = ~(torch.logical_or(remove_mask, vis_mask.to(device))).flatten()
285
- else:
286
- BNI_verts_mask = ~(remove_mask).flatten()
 
 
 
 
 
287
 
288
- BNI_part_mask = BNI_verts_mask[full_mesh.faces].any(dim=1)
289
  full_mesh.update_faces(BNI_part_mask.detach().cpu())
290
  full_mesh.remove_unreferenced_vertices()
291
 
@@ -544,6 +552,7 @@ def poisson_remesh(obj_path):
544
  ms.meshing_decimation_quadric_edge_collapse(targetfacenum=50000)
545
  # ms.apply_coord_laplacian_smoothing()
546
  ms.save_current_mesh(obj_path)
 
547
  polished_mesh = trimesh.load_mesh(obj_path)
548
 
549
  return polished_mesh
 
24
  from termcolor import colored
25
  import os.path as osp
26
  import _pickle as cPickle
27
+ from scipy.spatial import cKDTree
28
 
29
  from pytorch3d.structures import Meshes
30
  import torch.nn.functional as F
31
  import lib.smplx as smplx
 
 
32
  from pytorch3d.renderer.mesh import rasterize_meshes
33
  from PIL import Image, ImageFont, ImageDraw
34
  from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency
35
  import tinyobjloader
36
 
37
+ from lib.common.imutils import uncrop
38
+ from lib.common.render_utils import Pytorch3dRasterizer
39
+
40
 
41
  class SMPLX:
42
 
 
57
  self.smplx_flame_vid_path = osp.join(self.current_dir, "smpl_data/FLAME_SMPLX_vertex_ids.npy")
58
  self.smplx_mano_vid_path = osp.join(self.current_dir, "smpl_data/MANO_SMPLX_vertex_ids.pkl")
59
  self.front_flame_path = osp.join(self.current_dir, "smpl_data/FLAME_face_mask_ids.npy")
60
+ self.smplx_vertex_lmkid_path = osp.join(self.current_dir, "smpl_data/smplx_vertex_lmkid.npy")
61
 
62
  self.smplx_faces = np.load(self.smplx_faces_path)
63
  self.smplx_verts = np.load(self.smplx_verts_path)
64
  self.smpl_verts = np.load(self.smpl_verts_path)
65
  self.smpl_faces = np.load(self.smpl_faces_path)
66
+ self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path)
67
 
68
  self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid_path)
69
  self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid_path)
 
268
  return mesh
269
 
270
 
271
+ def part_removal(full_mesh, part_mesh, thres, device, smpl_obj, region, clean=True):
272
 
273
+ smpl_tree = cKDTree(smpl_obj.vertices)
274
+ SMPL_container = SMPLX()
275
 
276
  from lib.dataset.PointFeat import PointFeat
277
+
278
  part_extractor = PointFeat(
279
  torch.tensor(part_mesh.vertices).unsqueeze(0).to(device),
280
  torch.tensor(part_mesh.faces).unsqueeze(0).to(device))
281
 
282
+ (part_dist, _) = part_extractor.query(torch.tensor(full_mesh.vertices).unsqueeze(0).to(device))
283
 
284
+ remove_mask = part_dist < thres
 
 
 
285
 
286
+ if region == "hand":
287
+ _, idx = smpl_tree.query(full_mesh.vertices, k=1)
288
+ full_lmkid = SMPL_container.smplx_vertex_lmkid[idx]
289
+ remove_mask = torch.logical_and(remove_mask, torch.tensor(full_lmkid >= 20).type_as(remove_mask).unsqueeze(0))
290
+
291
+ elif region == "face":
292
+ _, idx = smpl_tree.query(full_mesh.vertices, k=5)
293
+ face_space_mask = torch.isin(torch.tensor(idx), torch.tensor(SMPL_container.smplx_front_flame_vid))
294
+ remove_mask = torch.logical_and(remove_mask, face_space_mask.any(dim=1).type_as(remove_mask).unsqueeze(0))
295
 
296
+ BNI_part_mask = ~(remove_mask).flatten()[full_mesh.faces].any(dim=1)
297
  full_mesh.update_faces(BNI_part_mask.detach().cpu())
298
  full_mesh.remove_unreferenced_vertices()
299
 
 
552
  ms.meshing_decimation_quadric_edge_collapse(targetfacenum=50000)
553
  # ms.apply_coord_laplacian_smoothing()
554
  ms.save_current_mesh(obj_path)
555
+ ms.save_current_mesh(obj_path.replace(".obj", ".ply"))
556
  polished_mesh = trimesh.load_mesh(obj_path)
557
 
558
  return polished_mesh