Yuliang commited on
Commit
add18ee
1 Parent(s): 0718695

title update

Browse files
Files changed (5) hide show
  1. LICENSE +1 -1
  2. README.md +2 -2
  3. environment.yaml +1 -1
  4. lib/common/render.py +4 -10
  5. lib/dataset/mesh_util.py +1 -1
LICENSE CHANGED
@@ -40,7 +40,7 @@ You acknowledge that the Data & Software is a valuable scientific resource and a
40
  Citation:
41
 
42
  @inproceedings{xiu2023econ,
43
- title = {{ECON: Explicit Clothed humans Obtained from Normals}},
44
  author = {Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
45
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
46
  month = {June},
 
40
  Citation:
41
 
42
  @inproceedings{xiu2023econ,
43
+ title = {{ECON: Explicit Clothed humans Optimized via Normal integration}},
44
  author = {Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
45
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
46
  month = {June},
README.md CHANGED
@@ -2,7 +2,7 @@
2
 
3
  <p align="center">
4
 
5
- <h1 align="center">ECON: Explicit Clothed humans Obtained from Normals</h1>
6
  <p align="center">
7
  <a href="http://xiuyuliang.cn/"><strong>Yuliang Xiu</strong></a>
8
 
@@ -152,7 +152,7 @@ python -m apps.avatarizer -n <filename>
152
 
153
  ```bibtex
154
  @inproceedings{xiu2023econ,
155
- title = {{ECON: Explicit Clothed humans Obtained from Normals}},
156
  author = {Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
157
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
158
  month = {June},
 
2
 
3
  <p align="center">
4
 
5
+ <h1 align="center">ECON: Explicit Clothed humans Optimized via Normal integration</h1>
6
  <p align="center">
7
  <a href="http://xiuyuliang.cn/"><strong>Yuliang Xiu</strong></a>
8
 
 
152
 
153
  ```bibtex
154
  @inproceedings{xiu2023econ,
155
+ title = {{ECON: Explicit Clothed humans Optimized via Normal integration}},
156
  author = {Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.},
157
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
158
  month = {June},
environment.yaml CHANGED
@@ -9,7 +9,7 @@ channels:
9
  - defaults
10
  dependencies:
11
  - python=3.8
12
- - pytorch-cuda=11.7
13
  - pytorch=1.13.0
14
  - nvidiacub
15
  - torchvision
 
9
  - defaults
10
  dependencies:
11
  - python=3.8
12
+ - pytorch-cuda=11.6
13
  - pytorch=1.13.0
14
  - nvidiacub
15
  - torchvision
lib/common/render.py CHANGED
@@ -315,7 +315,7 @@ class Render:
315
  save_path,
316
  fourcc,
317
  self.fps,
318
- (width, int(height * 1.5)),
319
  )
320
 
321
  pbar = tqdm(range(len(self.meshes)))
@@ -358,15 +358,9 @@ class Render:
358
  img_cloth = blend_rgb_norm(
359
  (torch.stack(mesh_renders)[num_obj:, cam_id] - 0.5) * 2.0, data
360
  )
361
-
362
- top_img = cv2.resize(
363
- torch.cat([img_raw, img_smpl],
364
- dim=-1).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8),
365
- (width, height // 2)
366
- )
367
- final_img = np.concatenate(
368
- [top_img, img_cloth.squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8)], axis=0
369
- )
370
  video.write(final_img[:, :, ::-1])
371
 
372
  video.release()
 
315
  save_path,
316
  fourcc,
317
  self.fps,
318
+ (width*3, int(height)),
319
  )
320
 
321
  pbar = tqdm(range(len(self.meshes)))
 
358
  img_cloth = blend_rgb_norm(
359
  (torch.stack(mesh_renders)[num_obj:, cam_id] - 0.5) * 2.0, data
360
  )
361
+ final_img = torch.cat(
362
+ [img_raw, img_smpl, img_cloth], dim=-1).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8)
363
+
 
 
 
 
 
 
364
  video.write(final_img[:, :, ::-1])
365
 
366
  video.release()
lib/dataset/mesh_util.py CHANGED
@@ -388,7 +388,7 @@ def poisson(mesh, obj_path, depth=10, decimation=True):
388
  pcl = o3d.io.read_point_cloud(pcd_path)
389
  with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Error) as cm:
390
  mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
391
- pcl, depth=depth, n_threads=6
392
  )
393
 
394
  # only keep the largest component
 
388
  pcl = o3d.io.read_point_cloud(pcd_path)
389
  with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Error) as cm:
390
  mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
391
+ pcl, depth=depth, n_threads=-1
392
  )
393
 
394
  # only keep the largest component